scholarly journals Development of a mathematical model of functioning system communications spacecraft

2021 ◽  
Vol 13 (4) ◽  
pp. 495-500
Author(s):  
Mikhail А. Zaytsev ◽  
◽  
Alexander K. Korovin ◽  
Sergey B. Savilkin ◽  
Andrey V. Sukhov ◽  
...  

The paper discusses a mathematical model of the functioning of communication spacecraft, using systems of differential equations for translational and rotational motion, as well as the process of distributing problems in a constellation of three satellites. The model is implemented by means of the python 3.6 language and the computational method library numpy1.19. A series of computational experiments was carried out in order to estimate the energy costs for the operation of grouping with various orbital parameters and external impact models. The presented results of the experiments suggest the possibility of increasing the life of spacecraft by improving the operating system.

2019 ◽  
Vol 4 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Aleksandr Shvets ◽  
Alexander Makaseyev

AbstractDynamic system "pendulum - source of limited excitation" with taking into account the various factors of delay is considered. Mathematical model of the system is a system of ordinary differential equations with delay. Three approaches are suggested that allow to reduce the mathematical model of the system to systems of differential equations, into which various factors of delay enter as some parameters. Genesis of deterministic chaos is studied in detail. Maps of dynamic regimes, phase-portraits of attractors of systems, phase-parametric characteristics and Lyapunov characteristic exponents are constructed and analyzed. The scenarios of transition from steady-state regular regimes to chaotic ones are identified. It is shown, that in some cases the delay is the main reason of origination of chaos in the system "pendulum - source of limited excitation".


2018 ◽  
Vol 22 ◽  
pp. 01029
Author(s):  
Özlem ERTEKİN

Mathematical modeling of biochemical, chemical reaction processes facilitates understanding. The kinetics of these reaction processes can be analyzed mathematically and kinetics are presented as systems of differential equations. Mathematical model of a reaction kinetic is studied in this study. Bernoulli-Sub equation function method is used in this study. This example can be new model for food engineering applications.


2011 ◽  
Vol 26 (1) ◽  
pp. 74-77
Author(s):  
Diana Dolicanin ◽  
Vladimir Amelkin ◽  
Milisav Stefanovic ◽  
Milos Vujisic

We propose a new method for constructing a mathematical model of a non-linear system in an auto-oscillation regime. The method is based on the divergence of a vector field having a constant value along the corresponding periodical motion. The variants of the obtained model could be used for describing nuclear processes that are represented by the systems of differential equations analogous to that of the presented model.


1998 ◽  
Vol 2 ◽  
pp. 23-30
Author(s):  
Igor Basov ◽  
Donatas Švitra

Here a system of two non-linear difference-differential equations, which is mathematical model of self-regulation of the sugar level in blood, is investigated. The analysis carried out by qualitative and numerical methods allows us to conclude that the mathematical model explains the functioning of the physiological system "insulin-blood sugar" in both normal and pathological cases, i.e. diabetes mellitus and hyperinsulinism.


2013 ◽  
Vol 1 (05) ◽  
pp. 58-65
Author(s):  
Yunona Rinatovna Krakhmaleva ◽  
◽  
Gulzhan Kadyrkhanovna Dzhanabayeva ◽  

1993 ◽  
Vol 45 (10) ◽  
pp. 1598-1608
Author(s):  
A. M. Samoilenko ◽  
Yu. V. Teplinskii

Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1467
Author(s):  
Muminjon Tukhtasinov ◽  
Gafurjan Ibragimov ◽  
Sarvinoz Kuchkarova ◽  
Risman Mat Hasim

A pursuit differential game described by an infinite system of 2-systems is studied in Hilbert space l2. Geometric constraints are imposed on control parameters of pursuer and evader. The purpose of pursuer is to bring the state of the system to the origin of the Hilbert space l2 and the evader tries to prevent this. Differential game is completed if the state of the system reaches the origin of l2. The problem is to find a guaranteed pursuit and evasion times. We give an equation for the guaranteed pursuit time and propose an explicit strategy for the pursuer. Additionally, a guaranteed evasion time is found.


Sign in / Sign up

Export Citation Format

Share Document