scholarly journals Example of A Kinetic Mathematical Modeling in Food Engineering

2018 ◽  
Vol 22 ◽  
pp. 01029
Author(s):  
Özlem ERTEKİN

Mathematical modeling of biochemical, chemical reaction processes facilitates understanding. The kinetics of these reaction processes can be analyzed mathematically and kinetics are presented as systems of differential equations. Mathematical model of a reaction kinetic is studied in this study. Bernoulli-Sub equation function method is used in this study. This example can be new model for food engineering applications.

Author(s):  
Л.Ф. Сафиуллина

В статье рассмотрен вопрос идентифицируемости математической модели кинетики химической реакции. В процессе решения обратной задачи по оценке параметров модели, характеризующих процесс, нередко возникает вопрос неединственности решения. На примере конкретной реакции продемонстрирована необходимость проводить анализ идентифицируемости модели перед проведением численных расчетов по определению параметров модели химической реакции. The identifiability of the mathematical model of the kinetics of a chemical reaction is investigated in the article. In the process of solving the inverse problem of estimating the parameters of the model, the question arises of the non-uniqueness of the solution. On the example of a specific reaction, the need to analyze the identifiability of the model before carrying out numerical calculations to determine the parameters of the reaction model was demonstrated.


A model of particle growth kinetics in a condensing system is investigated in which the mechanism is presumed to be an irreversible chemical reaction which proceeds at the particle-atm osphere interface. General growth laws for the assembly of particles are derived from the resulting infinite set of differential equations and tested against growth data on sulphur hydrosols. The relation between the model and the well-known pure birth process of mathematical statistics is emphasized.


Author(s):  
Ю.Н. Власов ◽  
Е.В. Нестерова ◽  
Е.Г. Хитров

В технике при изучении кинетики измельчения материалов пользуются математическими моделями в виде интегро-дифференциальных уравнений, решение которых трудоемко и не всегда приводит к получению наглядных результатов. Цель настоящей статьи разработать математическую модель, раскрывающую кинетику изменения фракционного состава измельчаемых древесных материалов, позволяющую на практике проводить оценку фракционного состава обрабатываемого сырья во времени. Методы исследования математический анализ, численные методы решения дифференциальных уравнений и обработки расчетных данных. Измельчение рассмотрено как многостадийный процесс, при котором фракции материала (узкие классы) под воздействием рабочего органа машины-измельчителя претерпевают превращения, происходящие как последовательно, так и параллельно, причем скорости превращений и доли вновь образованных узких классов материала определяются исходными размерами измельчаемых фракций и параметрами рабочего органа измельчителя. Предложена система дифференциальных уравнений, описывающая в общем превращения узких классов при измельчении, причем коэффициенты уравнений позволяют учесть произвольный вид функций скоростей измельчения фракций и выхода продуктов измельчения. Предложенная система является альтернативой интегро-дифференциальному уравнению балансовой модели измельчения. Выполнена оценка значений параметров математической модели на примере измельчения коры. По результатам сопоставления результатов моделирования с экспериментальными данными, полученными предыдущими исследователями, установлено, что предложенная дифференциальная модель изменения фракционного состава материала при принятых предпосылках к расчету ее параметров качественно и количественно описывает экспериментальных данные с высокой точностью. In techniques at study of kinetics of shredding of materials use mathematical models in the form of the integral-differential equations, which solution is laborious and not always leads to reception of evident results. The purpose of this article is to develop a mathematical model, which reveals the kinetics of change in fractional composition of wood materials being shredded, allowing in practice to evaluate the fractional composition of the processed raw materials in time. Methods of research include mathematical analysis, numerical methods for solving differential equations and processing of calculated data. Shredding is considered as multistage process at which fractions of a material (narrow classes) under the influence of a working body of the shredder machine undergo transformations occurring both consistently and in parallel, and rates of transformations and a share of again formed narrow classes of the material are defined by initial sizes of shredded fractions and parameters of the working body. The system of the differential equations describing in the general transformation of narrow classes at grinding is offered, and factors of the equations allow to consider any kind of functions of speeds of grinding of fractions and the output of shredding products. The proposed system is an alternative to the integral-differential equation of the balance shredding model. The estimation of values of parameters of the mathematical model on an example of bark shredding is carried out. By results of comparison of results of modeling with the experimental data received by previous researchers it is established that the offered differential model of change of fractional composition of the material at the accepted preconditions to calculation of its parameters qualitatively and quantitatively describes the experimental data with high accuracy.


2022 ◽  
Vol 10 (E) ◽  
pp. 22-26
Author(s):  
Nadezhda Cherkunova

BACKGROUND:  The article examines the history and statistics of the pandemic spread. AIM: The study aimed to  develop a mathematical model reflecting the time dependence of the parameters characterizing the spread of the pandemic. MATERIALS AND METHODS: Differential equations were used to study the spread of the pandemic. RESULTS:  The case, where the coefficients of morbidity and recovery are different is considered. The patterns of change in the number of people susceptible to the disease and the number of infectious patients are revealed as a function of time. Using the developed model, the peak of the pandemic is found, i.e., the time at which the number of infectious patients will be the maximum.


2019 ◽  
Vol 4 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Aleksandr Shvets ◽  
Alexander Makaseyev

AbstractDynamic system "pendulum - source of limited excitation" with taking into account the various factors of delay is considered. Mathematical model of the system is a system of ordinary differential equations with delay. Three approaches are suggested that allow to reduce the mathematical model of the system to systems of differential equations, into which various factors of delay enter as some parameters. Genesis of deterministic chaos is studied in detail. Maps of dynamic regimes, phase-portraits of attractors of systems, phase-parametric characteristics and Lyapunov characteristic exponents are constructed and analyzed. The scenarios of transition from steady-state regular regimes to chaotic ones are identified. It is shown, that in some cases the delay is the main reason of origination of chaos in the system "pendulum - source of limited excitation".


2015 ◽  
Vol 68 ◽  
pp. 184-195 ◽  
Author(s):  
Victor E. Saouma ◽  
Ruth A. Martin ◽  
Mohammad A. Hariri-Ardebili ◽  
Tetsuya Katayama

2020 ◽  
Vol 13 (08) ◽  
pp. 2050167
Author(s):  
Anka Markovska

A mathematical model of adaptive immune response after transplantation is formulated by five nonlinear ordinary differential equations. Theorems of existence, uniqueness and nonnegativity of solution are proven. Numerical simulations of immune response after transplantation without suppression of acquired cellular immunity and after suppression were performed.


2016 ◽  
Vol 7 (3) ◽  
pp. 1271
Author(s):  
Jorge Guerra Pires

The ambition of this document is to set in evidence the prerequisite for integrative (mathematical) models, mechanism-based models, for appetite/bodyweight control. For achieving this goal, it is provided a scrutinized literature review and it is organized them in such a way to make the point. The quantitative methods exploited by the authors are called differential equations solved numerically; they are discussed briefly since it is not our goal herein to handle details. On the current state of the art, there is no mathematical model to the best of the author’s knowledge targeting at integrating several hormones at once in mathematical descriptions: even for single hormones, the literature is either occasional or do not exist at all; it is depicted some results for simple models already built. As it can be seen, the functions and roles seem fuzzy, most hormones seem to be piloting the same undertaking. The key challenge from a mathematical modeling perspective is how to separate properly the mechanisms of each hormone. The kind of pursuit presented herein could initiate an imperative cascade of mathematical modeling applied to metabolism of bodyweight control and energy homeostasis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254208
Author(s):  
Hannah West ◽  
Fiona Roberts ◽  
Paul Sweeney ◽  
Simon Walker-Samuel ◽  
Joseph Leedale ◽  
...  

Nanoparticles have the potential to increase the efficacy of anticancer drugs whilst reducing off-target side effects. However, there remain uncertainties regarding the cellular uptake kinetics of nanoparticles which could have implications for nanoparticle design and delivery. Polymersomes are nanoparticle candidates for cancer therapy which encapsulate chemotherapy drugs. Here we develop a mathematical model to simulate the uptake of polymersomes via endocytosis, a process by which polymersomes bind to the cell surface before becoming internalised by the cell where they then break down, releasing their contents which could include chemotherapy drugs. We focus on two in vitro configurations relevant to the testing and development of cancer therapies: a well-mixed culture model and a tumour spheroid setup. Our mathematical model of the well-mixed culture model comprises a set of coupled ordinary differential equations for the unbound and bound polymersomes and associated binding dynamics. Using a singular perturbation analysis we identify an optimal number of ligands on the polymersome surface which maximises internalised polymersomes and thus intracellular chemotherapy drug concentration. In our mathematical model of the spheroid, a multiphase system of partial differential equations is developed to describe the spatial and temporal distribution of bound and unbound polymersomes via advection and diffusion, alongside oxygen, tumour growth, cell proliferation and viability. Consistent with experimental observations, the model predicts the evolution of oxygen gradients leading to a necrotic core. We investigate the impact of two different internalisation functions on spheroid growth, a constant and a bond dependent function. It was found that the constant function yields faster uptake and therefore chemotherapy delivery. We also show how various parameters, such as spheroid permeability, lead to travelling wave or steady-state solutions.


Sign in / Sign up

Export Citation Format

Share Document