Simulation of Free Running Maneuvers of Unmanned Underwater Vehicles Based on a CFD Study

2021 ◽  
Vol 31 (4) ◽  
pp. 395-402
Author(s):  
Christian Weißenfeld ◽  
Moustafa Abdel-Maksoud
2019 ◽  
Vol 27 (1) ◽  
pp. 332-345 ◽  
Author(s):  
Charita Darshana Makavita ◽  
Shantha Gamini Jayasinghe ◽  
Hung Duc Nguyen ◽  
Dev Ranmuthugala

Author(s):  
Robert M. Koch

Abstract The present work describes an integrated, two-phase computer-based method for fabricating marine propulsors using stereolithography. This new methodology seamlessly integrates stereolithography rapid prototyping techniques with the hydrodynamic design, structural design, and prototype testing of advanced marine propulsors in order to greatly increase the design process efficiency and reduce development time. Its use as applied to the design, fabrication, and testing of advanced propulsor prototypes for small weapon’s-scale undersea vehicles (e.g., Unmanned Underwater Vehicles (UUVs), lightweight and heavyweight torpedoes, etc.) is described in order to demonstrate specific strengths of the new method.


Author(s):  
Matthias Golz ◽  
Florin Boeck ◽  
Sebastian Ritz ◽  
Gerd Holbach

The efforts to discover the world’s oceans — even in extremely deep-sea environments — have grown more and more in the past years. In this context, unmanned underwater vehicles play a central role. Underwater systems that are not tethered need to provide an apparatus to ensure a safe return to the surface. Therefore, positive buoyancy is required and can be achieved by either losing weight or expanding volume. A conservative method is the dropping of ballast weight. However, nowadays this method is not appropriate due to the environmental impact. This paper presents a ballast system for an automated ascent of a deep-sea seabed station in up to 6000 m depth. The ballast system uses a DC motor driven modified hydraulic pump and a compressed air auxiliary system inside a pressure vessel. With regard to the environmental contamination in case of a leakage, only water is used as ballast fluid. The modification of an ordinary oil-hydraulic radial piston pump and the set-up of the ballast system is introduced. Results from sea trials in the Atlantic Ocean are presented to verify the functionality of the ballast system.


2006 ◽  
Vol 23 (2) ◽  
pp. 314-324 ◽  
Author(s):  
David C. English ◽  
Kendall L. Carder

Abstract An unmanned underwater vehicle (UUV) with hyperspectral optical sensors that measure downwelling irradiance and upwelling radiance was deployed over sandy bottoms, sea grass patches, and coral reefs near Lee Stocking Island, Bahamas, during the Coastal Benthic Optical Properties (CoBOP) program of 2000. These deployments occurred during both sunny and cloudy weather. If the rate of irradiance change due to cloud cover is slight, then the inclusion of a variable cloudy-irradiance factor will allow a reasonable estimation of water column absorption. Examination of data from a deployment in May 2000 under cloudy skies shows that the combination of hyperspectral light-field measurements, knowledge of the UUV's position in the water column, and a cloudy-irradiance factor permits consistent estimations of bottom reflectivity to be made from UUV measured reflectances. The spatial distribution of reflectance estimates obtained from a UUV may be useful for validation of airborne ocean color imagery.


Author(s):  
S. G. Cherny ◽  
A. A. Zhilenkov

The study focuses on the modeled processes describing the interaction of the scanning sensor with the element of underwater communication. This task is relevant in constructing the systems for automated monitoring of underwater objects by means of unmanned underwater vehicles. A simple model has been obtained that makes it possible to describe the structural properties of the object’s material or damage on its surface. The mathematical model of interaction between the object and the scanning sensor is presented as a sum of two series. The study shows that in problems of controlling the local structure of the object’s surface, it is possible to present the mathematical model in Kotelnikov expanded form. The obtained results are of high practical importance in solving the problems of laying specialized lines and highways in the territory of the Crimean water area of the Azov-Black Sea basin and regular monitoring their condition


Sign in / Sign up

Export Citation Format

Share Document