scholarly journals Karst hydrogeology of Lamprechtsofen (Leoganger Steinberge, Salzburg)

2019 ◽  
Vol 112 (1) ◽  
pp. 50-61 ◽  
Author(s):  
Katharina Gröbner ◽  
Wolfgang Gadermayr ◽  
Giorgio Höfer-Öllinger ◽  
Harald Huemer ◽  
Christoph Spötl

AbstractThe Leoganger Steinberge are a heavily karstified massif largely composed of Dachstein dolomite and limestone hosting the deepest through-trip cave in the world, Lamprechtsofen, whose frontal parts are developed as a show cave. Many parts of this 60 km-long and 1724 m-deep system are hydrologically active. 1.5 km behind the lower cave entrance Grüntopf stream and Kneippklamm stream merge to form the main cave stream. Another underground stream, Stainerhallen stream, flows through the eponymous hall of the show cave. Since 2007 water temperature, electrical conductivity and water level have been monitored in the Grüntopf and Kneippklamm stream. Water temperature and water level in the Stainerhallen and main cave stream have been measured since 2016.The long-term dataset (2013–2017) shows that the water temperature of the cave streams (Grüntopf stream: 3.7–5.2°C; Kneippklamm stream: 5.1–5.9°C) is largely invariant, but the electrical conductivity varies strongly (Grüntopf stream: 107–210 µS/cm; Kneippklamm stream: 131–248 µS/cm) in response to snowmelt and precipitation events. The event water of the Kneippklamm stream is characterized by a low electrical conductivity and is then followed by slightly warmer and higher mineralized water derived from the phreatic zone. This dual flow pattern also explains the asymmetrical changes of the water level during snowmelt: the fast event water flows directly through vadose pathways to the measurement site, whereas the hydraulic (phreatic) response is delayed. The Grüntopf stream reacts to precipitation and snowmelt events by changes in the karst-water table, which can be explained by a piston flow-model. The Kneippklamm stream reveals evidence of a lifter system.The altitude of the catchments was calculated using δ18O values of water samples from the underground streams and from surface precipitation. The Grüntopf stream shows the highest mean catchment (2280 m a.s.l.), which is in agreement with its daily fluctuations of the water level until August caused by long-lasting snowmelt. The Stainerhallen stream has the lowest catchment (average 1400 m a.s.l.). The catchments of the other two streams are at intermediate elevations (1770–1920 m a.s.l.). The integration of the catchment analyses and observations from tracer tests conducted in the 1970s showed that the latter reflected only one aspect of the karst water regime in this massif. During times of high recharge the water level rises, new flow paths are activated and the karst watershed shifts.

Author(s):  
Liang Zhang ◽  
Mingming Luo ◽  
Zhihua Chen

Solute storage and release in groundwater are key processes in solute transport for groundwater remediation and protection. In karst areas where concentrated recharge conditions exist, pollution incidents can easily occur in springs that are hydraulically connected to densely inhabited karst depressions. The intrinsic heterogeneity common in karst media makes modeling solute transport very difficult with great uncertainty. Meanwhile, it is noteworthy that solute storage and release within subsurface conduits and fissures exhibit strong controlling function on pollutant attenuation during underground floods. Consequently, in this paper, we identified and estimated the solute storage and release processes in karst water systems under concentrated recharge conditions. The methodology uses the advection–dispersion method and field tracer tests to characterize solute transport in different flow paths. Two solute transport pathways were established (i.e., linear pathway (direct transport through karst conduits) and dynamic pathway (flow through fissures)). Advection–dispersion equations were used to fit the breakthrough curves in conduit flow, while the volume of solute storage in fissures were calculated by segmenting the best fitting curves from the total breakthrough curves. The results show that, greater recharge flow or stronger dynamic conditions leads to lower solute storage rate, with the storage rate values less than 10% at high water level conditions. In addition, longer residence time was recorded for solute exchange between conduits and fissures at the low water level condition, thereby contributing to a higher solute storage rate of 26% in the dynamic pathway.


Water SA ◽  
2018 ◽  
Vol 44 (2 April) ◽  
Author(s):  
M-J Stowe ◽  
DW Hedding ◽  
FD Eckardt ◽  
W Nel

Given the remoteness and challenging environmental conditions on sub-Antarctic Marion Island, continuous high-resolution studies of the island’s natural water systems are rare. Subsequently, current understanding of the island’s hydrochemistry is based entirely on manual point-based measurements. To address this research gap we analysed continuous, in-situ high-frequency physicochemical measurements (pH, water temperature, dissolved oxygen (DO), and electrical conductivity (EC)) from the Soft Plume River over the period 21 April 2015–26 April 2015. We observed a sharp, short-term response from all measurements to a precipitation event that was superimposed on consistent but subtle diel (i.e. 24 h) cycles throughout the study. Total variation in pH and electrical conductivity amounted to 1.3 units and 27.7 μS/cm respectively. Stream water temperature was less variable (6.2°C) than air surface temperature (14.2°C). Total variation in DO was 2.0 mg/L. Aside from the precipitation-induced response, diel oscillations were small and only visible through the use of continuous, high-resolution monitoring. Findings highlight the advantages of continuous high-frequency monitoring in capturing the range of daily variation and elucidating diel cycles in stream water physicochemistry on sub-Antarctic Marion Island that have not previously been accounted for.


2015 ◽  
Vol 8 (1) ◽  
pp. 309-317 ◽  
Author(s):  
Xing Liting ◽  
Zhou Juan ◽  
Zhang Fengjuan ◽  
Wang Song ◽  
Dou Tongwen ◽  
...  

In karst regions, due to the heterogeneous features of karst medium, the characteristics of the groundwater flow turn to be of high complexity. Researchers have been seeking proper forecasting methods for karst water dynamic for many years. This paper, taking the spring in Jinan as an example, using regression analysis, analyzed the factors influencing spring water dynamic, and quantitatively evaluated the influencing coefficients of spring water level concerning rainfall, exploitation and recharge as well as the natural decay coefficient of spring water in dry seasons. The prediction model coupling multiple factors was built by investigating natural and anthropogenic factors influencing groundwater level, which could be used for forecasting dynamic of spring water in Jinan. The calculated value of model was highly coincided with the observed value. In consideration of the characteristics of uneven precipitation in Jinan, the suitable zones and volume of artificial recharge were investigated finally, which could help to sustain the spewing of Jinan springs significantly.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 416
Author(s):  
Bwalya Malama ◽  
Devin Pritchard-Peterson ◽  
John J. Jasbinsek ◽  
Christopher Surfleet

We report the results of field and laboratory investigations of stream-aquifer interactions in a watershed along the California coast to assess the impact of groundwater pumping for irrigation on stream flows. The methods used include subsurface sediment sampling using direct-push drilling, laboratory permeability and particle size analyses of sediment, piezometer installation and instrumentation, stream discharge and stage monitoring, pumping tests for aquifer characterization, resistivity surveys, and long-term passive monitoring of stream stage and groundwater levels. Spectral analysis of long-term water level data was used to assess correlation between stream and groundwater level time series data. The investigations revealed the presence of a thin low permeability silt-clay aquitard unit between the main aquifer and the stream. This suggested a three layer conceptual model of the subsurface comprising unconfined and confined aquifers separated by an aquitard layer. This was broadly confirmed by resistivity surveys and pumping tests, the latter of which indicated the occurrence of leakage across the aquitard. The aquitard was determined to be 2–3 orders of magnitude less permeable than the aquifer, which is indicative of weak stream-aquifer connectivity and was confirmed by spectral analysis of stream-aquifer water level time series. The results illustrate the importance of site-specific investigations and suggest that even in systems where the stream is not in direct hydraulic contact with the producing aquifer, long-term stream depletion can occur due to leakage across low permeability units. This has implications for management of stream flows, groundwater abstraction, and water resources management during prolonged periods of drought.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 243
Author(s):  
Javier Alcocer ◽  
Luis A. Oseguera ◽  
Diana Ibarra-Morales ◽  
Elva Escobar ◽  
Lucero García-Cid

High-mountain lakes are among the most comparable ecosystems globally and recognized sentinels of global change. The present study pursued to identify how the benthic macroinvertebrates (BMI) communities of two tropical, high mountain lakes, El Sol and La Luna, Central Mexico, have been affected by global/regional environmental pressures. We compared the environmental characteristics and the BMI communities between 2000–2001 and 2017–2018. We identified three principal environmental changes (the air and water temperature increased, the lakes’ water level declined, and the pH augmented and became more variable), and four principal ecological changes in the BMI communities [a species richness reduction (7 to 4), a composition change, and a dominant species replacement all of them in Lake El Sol, a species richness increase (2 to 4) in Lake La Luna, and a drastic reduction in density (38% and 90%) and biomass (92%) in both lakes]. The air and water temperature increased 0.5 °C, and lakes water level declined 1.5 m, all suggesting an outcome of climate change. Contrarily to the expected acidification associated with acid precipitation, both lakes deacidified, and the annual pH fluctuation augmented. The causes of the deacidification and the deleterious impacts on the BMI communities remained to be identified.


2015 ◽  
Vol 14 ◽  
pp. 70-90 ◽  
Author(s):  
Caley K. Gasch ◽  
Tomislav Hengl ◽  
Benedikt Gräler ◽  
Hanna Meyer ◽  
Troy S. Magney ◽  
...  

2014 ◽  
Vol 10 (1) ◽  
Author(s):  
Lieza Corsita ◽  
Arwin Arwin ◽  
Barti Setiani Muntalif ◽  
Indah Rachmatiah Salami

Physico-chemistry and biological data were investigated  from  October 2010 until April 2011 of Jatiluhur reservoir. A total of six sampling stations were selected for this study. The discharge and hidrological data were obtained from Perum Jasa Tirta II Jatiluhur. The results showed that the hydrological regime in the reservoir Jatiluhur was affected by global phenomenon La Nina events in 2010 and early in 2011. Stream flows were determined during sampling to range from 78  to 482.5 m3/s. The water quality findings were as follows: pH (6.93-8.81), temperature (26.37-30.6°C), dissolved oxygen (0.733-5.2 mg/l), conductivity (2.45-233µmhos/cm), COD (7.36-96.9 mg/l), turbidity (4.063-65.6 NTU), total phosphate (0.002-0.324 mg/l), total nitrogen (0.99-5.96 mg/l), chlorophyl (2.237-43.37 mg/m3), visibility (30-160 cm). The eutrophication was pronounced at Jatiluhur reservoir. Canonical Correspendence Analysis found that some water quality parameters correlated positively with the discharge and the water level.


Sign in / Sign up

Export Citation Format

Share Document