scholarly journals isolation and fractionation of blood plasma extracellular vesicle (EV) subpopulations using size exclusion chromatography

2020 ◽  
Author(s):  
Jacqueline Wood
2019 ◽  
Vol 76 (12) ◽  
pp. 2369-2382 ◽  
Author(s):  
Marta Monguió-Tortajada ◽  
Carolina Gálvez-Montón ◽  
Antoni Bayes-Genis ◽  
Santiago Roura ◽  
Francesc E. Borràs

Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3156
Author(s):  
Daniel S. K. Liu ◽  
Flora M. Upton ◽  
Eleanor Rees ◽  
Christopher Limb ◽  
Long R. Jiao ◽  
...  

Cancer cells release extracellular vesicles, which are a rich target for biomarker discovery and provide a promising mechanism for liquid biopsy. Size-exclusion chromatography (SEC) is an increasingly popular technique, which has been rediscovered for the purposes of extracellular vesicle (EV) isolation and purification from diverse biofluids. A systematic review was undertaken to identify all papers that described size exclusion as their primary EV isolation method in cancer research. In all, 37 papers were identified and discussed, which showcases the breadth of applications in which EVs can be utilised, from proteomics, to RNA, and through to functionality. A range of different methods are highlighted, with Sepharose-based techniques predominating. EVs isolated using SEC are able to identify cancer cells, highlight active pathways in tumourigenesis, clinically distinguish cohorts, and remain functionally active for further experiments.


2021 ◽  
Vol 10 (6) ◽  
Author(s):  
Juan A. Martínez‐Greene ◽  
Karina Hernández‐Ortega ◽  
Ricardo Quiroz‐Baez ◽  
Osbaldo Resendis‐Antonio ◽  
Israel Pichardo‐Casas ◽  
...  

Biomedicines ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 246 ◽  
Author(s):  
Anders Askeland ◽  
Anne Borup ◽  
Ole Østergaard ◽  
Jesper V. Olsen ◽  
Sigrid M. Lund ◽  
...  

Extracellular vesicles (EVs) are small membrane-enclosed particles released by cells under various conditions specific to cells’ biological states. Hence, mass-spectrometry (MS) based proteome analysis of EVs in plasma has gained much attention as a method to discover novel protein biomarkers. MS analysis of EVs in plasma is challenging and EV isolation is usually necessary. Therefore, we compared differences in abundance, subtypes, and contamination for EVs isolated by high-speed centrifugation, size exclusion chromatography (SEC), and peptide-affinity precipitation (PAP/ME kit) for subsequent MS-based proteome analysis. Successful EV isolation was evaluated by nanoparticle-tracking analysis, immunoblotting, and transmission electron microscopy, while EV abundance, EV subtypes, and contamination was evaluated by label-free tandem MS. High-speed centrifugation and SEC isolates showed high EV abundance at the expense of contamination by non-EV proteins and lipoproteins, respectively. These two methods also resulted in EVs of a similar type, however, with smaller EVs in SEC isolates. PAP isolates had a relatively low EV abundance and high contamination. We consider high-speed centrifugation and SEC suitable as EV isolation for MS biomarker studies, where the choice between the two should depend on the scientific questions and whether the focus is on larger or smaller EVs or a combination of both.


Sign in / Sign up

Export Citation Format

Share Document