scholarly journals Design a model of Image Restoration using AI in Digital Image Processing

Author(s):  
Boosi Shyamala, Dr. Chetana Tukkoji, Archana S Nadhan, Dioline Sara

Image restoration is the process of obtaining a distorted/noise image and giving an approximate clear image of the original image. False focus, motion blur and noise are forms of distortion. Image restoration can be done by reversing the process called Point Extension Function (PSF). In this process, the blurred image is generated by point source imaging and can be used to restore the image lost due to the blur process. Like to form. Modern artificial intelligence (AI) applied to image processing includes facial recognition, object recognition and detection, video, image action, and visual search. It helps to develop smart applications in digital image processing.

2021 ◽  
pp. 13050-13062
Author(s):  
Mrs. Poonam Y. Pawar, Dr. Bharati Sanjay Ainapure

Image Restoration is one of the challenging and essential milestones in the image processing domain. Digital image processing is a technique for manipulating digital images using a variety of computer algorithms. The process of transforming the degraded or damaged image to the original image can be known as Image Restoration. The image restoration process improves image quality by converting the degraded image into the original clean image. The techniques for image restoration are comprised of predefined parameters through which digital image gets processed for refinements. The purpose of restoration is to start with the acquired image and then estimate the original image as accurately as possible. A degraded image can be contaminated by any of a blur or noise or both. Many factors can contribute to image degradation, including poor capture, poor lighting, and poor eyesight. Medical science, defensive sensor systems, forensic detections, and astrology all rely on image restoration for accuracy. This paper discusses various image restoration techniques using recent trends for performance improvements.


2013 ◽  
Vol 409-410 ◽  
pp. 1653-1656 ◽  
Author(s):  
Yu Fan ◽  
Xue Feng Wu

Computational photography and image processing technology are used to restore the clearness of images taken in fog scenes autmatically.The technology is used to restore the clearness of the fog scene,which includes digital image processing and the physical model of atmospheric scattering.An algorithm is designed to restore the clearness of the fog scene under the assumption of the albedo images and then the resolution algorithm is analysised.The algorithm is implemented by the software of image process ,which can improve the efficiency of the algorithm and interface.The fog image and defogging image are compared, and the results show that the visibility of the image is improved, and the image restoration is more clearly .


2021 ◽  
Vol 2062 (1) ◽  
pp. 012007
Author(s):  
Sumant Sekhar Mohanty ◽  
Sushreeta Tripathy

Abstract Noise in an image is a random variation of brightness or color information in the original image. Noise is consistently presented in digital images during picture obtaining, coding, transmission, and processing steps. Image noise is most apparent in image regions with a low signal level. There are various reasons for the creation of noise in an image, such as electronic noise in amplifiers or detectors, disturbances and overheating of the sensor, disturbances in the medium of traveling for a digital image, etc. Noise is exceptionally hard to eliminate from the digital pictures without the earlier information of the noise model. There are various types of noise that can be available in a noise model. Filters are used to remove these types of noises in a digital image in image processing. In this research, we have implemented different filtering techniques that have been used to remove the noises in an image.


2014 ◽  
Vol 955-959 ◽  
pp. 1085-1088 ◽  
Author(s):  
Xue Feng Wu ◽  
Yu Fan

Computational photography and image processing technology are used to restore the clearness of images taken in fog scenes autmatically.The technology is used to restore the clearness of the fog scene,which includes digital image processing and the physical model of atmospheric scattering.An algorithm is designed to restore the clearness of the fog scene under the assumption of the albedo images and then the resolution algorithm is analysised.The algorithm is implemented by the software of image process ,which can improve the efficiency of the algorithm and interface.The fog image and defogging image are compared, and the results show that the visibility of the image is improved, and the image restoration is more clearly.


2017 ◽  
Author(s):  
Robbi Rahim

Digital image processing is a computational process that is widely used today starting from editing photos or also the manipulation of the picture, one form of image processing is edge detection, edge detection in images is one technique that can be used to mark parts into detail of the picture, either a blurred image due to error or the effect of the image acquisition process, in this study using the Frei-Chen algorithm to perform edge detection image in order to know the borders of the picture.


2020 ◽  
Vol 4 (2) ◽  
pp. 116
Author(s):  
Dika Rizki Darmawan ◽  
Fauziah Fauziah ◽  
Ratih Titi Komalasari

In some cases, there is some damage to an image caused by interference during the image capture process. Blurred image damage can be overcome by deconvolution digital image processing. There are various methods to repair the image blur damage, including using the Regularized, Wiener, and Lucy Richardson deconvolution methods. Each blurring image repair method produces a different debluring result of image processing. Image comparison application was built to compare the ability of image restoration results to a Motion Blur image with the algorithms used in deconvolution. Image restoration comparison parameters used include determining the MSE and PSNR values between the test image and the deconvolved image. The results of implementing the comparative application of Motion Blur image improvement to 270 blur simulations consisting of 9 different levels of image blurring, obtained the average PSNR value for Wiener's deconvolution = 59.16dB, Lucy Richardson = 26.92dB and Regularized = 36.94dB.Keywords:Image Restoration; Lucy Richardson; Motion Blur; Regularized; Wiener.


Author(s):  
R. C. Gonzalez

Interest in digital image processing techniques dates back to the early 1920's, when digitized pictures of world news events were first transmitted by submarine cable between New York and London. Applications of digital image processing concepts, however, did not become widespread until the middle 1960's, when third-generation digital computers began to offer the speed and storage capabilities required for practical implementation of image processing algorithms. Since then, this area has experienced vigorous growth, having been a subject of interdisciplinary research in fields ranging from engineering and computer science to biology, chemistry, and medicine.


Author(s):  
L. Montoto ◽  
M. Montoto ◽  
A. Bel-Lan

INTRODUCTION.- The physical properties of rock masses are greatly influenced by their internal discontinuities, like pores and fissures. So, these need to be measured as a basis for interpretation. To avoid the basic difficulties of measurement under optical microscopy and analogic image systems, the authors use S.E.M. and multiband digital image processing. In S.E.M., analog signal processing has been used to further image enhancement (1), but automatic information extraction can be achieved by simple digital processing of S.E.M. images (2). The use of multiband image would overcome difficulties such as artifacts introduced by the relative positions of sample and detector or the typicals encountered in optical microscopy.DIGITAL IMAGE PROCESSING.- The studied rock specimens were in the form of flat deformation-free surfaces observed under a Phillips SEM model 500. The SEM detector output signal was recorded in picture form in b&w negatives and digitized using a Perkin Elmer 1010 MP flat microdensitometer.


Author(s):  
J. Hefter

Semiconductor-metal composites, formed by the eutectic solidification of silicon and a metal silicide have been under investigation for some time for a number of electronic device applications. This composite system is comprised of a silicon matrix containing extended metal-silicide rod-shaped structures aligned in parallel throughout the material. The average diameter of such a rod in a typical system is about 1 μm. Thus, characterization of the rod morphology by electron microscope methods is necessitated.The types of morphometric information that may be obtained from such microscopic studies coupled with image processing are (i) the area fraction of rods in the matrix, (ii) the average rod diameter, (iii) an average circularity (roundness), and (iv) the number density (Nd;rods/cm2). To acquire electron images of these materials, a digital image processing system (Tracor Northern 5500/5600) attached to a JEOL JXA-840 analytical SEM has been used.


Author(s):  
K. N. Colonna ◽  
G. Oliphant

Harmonious use of Z-contrast imaging and digital image processing as an analytical imaging tool was developed and demonstrated in studying the elemental constitution of human and maturing rabbit spermatozoa. Due to its analog origin (Fig. 1), the Z-contrast image offers information unique to the science of biological imaging. Despite the information and distinct advantages it offers, the potential of Z-contrast imaging is extremely limited without the application of techniques of digital image processing. For the first time in biological imaging, this study demonstrates the tremendous potential involved in the complementary use of Z-contrast imaging and digital image processing.Imaging in the Z-contrast mode is powerful for three distinct reasons, the first of which involves tissue preparation. It affords biologists the opportunity to visualize biological tissue without the use of heavy metal fixatives and stains. For years biologists have used heavy metal components to compensate for the limited electron scattering properties of biological tissue.


Sign in / Sign up

Export Citation Format

Share Document