scholarly journals The influence of grinding wheel wear on the components of the grinding forces, the surface roughness and the temperature in the process of surface grinding

Mechanik ◽  
2015 ◽  
pp. 715/288-715/291
Author(s):  
Radosław Rosik ◽  
Anna Grdulska ◽  
Piotr Zgórniak
Author(s):  
K Furutani ◽  
N T Hieu ◽  
N Ohguro ◽  
T Nakamura

This paper deals with automatic compensation of grinding wheel wear in wet grinding by pressure-based in-process measurement. A pressure sensor is set close to a grinding wheel with a small gap. When grinding fluid is dragged into the gap by the rotation, the wear of the grinding wheel can be predicted by using hydrodynamic pressure that has been generated, which corresponds to the gap thickness and topography of the surface. This method was applied to a numerically controlled surface grinding machine. Some characteristics of the pressure were measured. The pressure sensor was repositioned to keep the pressure constant with the null method. The spindle was also repositioned according to the sensor displacement, which was equal to the worn thickness of the grinding wheel. The error of the ground depth with compensation was less than the feeding step for the compensation. The measurement performance by the null method was compared with that obtained without compensation, with compensation by a deflection method and by the contact method.


2021 ◽  
Author(s):  
Yonghao Wang ◽  
Ping Zhou ◽  
Yuhang Pan ◽  
Ying Yan ◽  
Dongming Guo

Abstract Grinding is a popular method for producing high-quality parts made of hard and brittle materials. A lot of researchers have focused on the impact of grinding parameters on surface quality. However, only a few studies discussed the surface quality instability caused by the grinding wheel wear during a long grinding process. In this paper, through wheel state monitoring and surface quality testing of ground samples, it is found that the relationship between ground surface roughness and theoretical undeformed chip thickness is significantly affected by the grinding wheel wear state, rather than maintain steady as described in most available models. By introducing the normal grinding force, a linearly relationship was found among normal grinding force, undeformed chip thickness and ground surface roughness. Besides, sensitivity analysis was conducted to guide the parameter adjustment to maintain the stability of ground surface roughness and grinding state. The mechanism of the effect of wheel wear on normal grinding force was also studied in detail. This study will help to further understand the mechanism of the influence of wheel wear on the grinding stability.


2016 ◽  
Vol 686 ◽  
pp. 125-130 ◽  
Author(s):  
Miroslav Neslušan ◽  
Jitka Baďurová ◽  
Anna Mičietová ◽  
Maria Čiliková

This paper deals with cutting ability of progressive Norton Quantum grinding wheel during grinding roll bearing steel 100Cr6 of hardness 61 HRC. Cutting ability of this wheel is compared with conventional grinding wheel and based on measurement of grinding forces as well as surface roughness. Results of experiments show that Norton Quantum grinding wheels are capable of long term grinding cycles at high removal rates without unacceptable occurrence of grinding chatter and surface burn whereas application of conventional wheel can produce excessive vibration and remarkable temper colouring of ground surface. Moreover, while Norton Quantum grinding wheel gives nearly constant grinding forces and surface roughness within ground length at higher removal rates, conventional grinding wheel (as that reported in this study) does not.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Amon Gasagara ◽  
Wuyin Jin ◽  
Angelique Uwimbabazi

This article presents a new model of the flat surface grinding process vibration conditions. The study establishes a particular analysis and comparison between the influence of the normal and tangential components of grinding forces on the vibration conditions of the process. The bifurcation diagrams are used to examine the process vibration conditions for the depth of cut and the cutting speed as the bifurcation parameters. The workpiece is considered to be rigid and the grinding wheel is modeled as a nonlinear two-degrees-of-freedom mass-spring-damper oscillator. To verify the model, experiments are carried out to analyze in the frequency domain the normal and tangential dynamic grinding forces. The results of the process model simulation show that the vibration condition is more affected by the normal component than the tangential component of the grinding forces. The results of the tested experimental conditions indicate that the cutting speed of 30 m/s can permit grinding at the depth of cut up to 0.02 mm without sacrificing the process of vibration behavior.


1959 ◽  
Vol 81 (3) ◽  
pp. 187-199 ◽  
Author(s):  
E. J. Krabacher

Optimum utilization of grinding wheels can best be achieved if the nature of their performance and wear characteristics, and the factors that affect these characteristics, are understood and applied. As reported in this paper, a comprehensive, continuing, grinding-research program has contributed to such an understanding. A study of the nature of grinding-wheel wear indicates that the grinding-wheel wear curve is similar to those of other cutting tools. It demonstrates further that the type of grinding operation significantly affects the nature of wheel wear. A unique technique has been developed for very accurately measuring grinding-wheel wear. This measured wear may be translated into terms of “grinding ratio,” which is the generally accepted parameter for measuring wheel wear. It is the ratio of the volume of metal removed per unit volume of wheel worn away. Extensive studies have been carried out to determine the effect of mechanical variables on grinding ratio, power required in metal removal, and on surface finish. Experimental findings indicate that grinding ratio decreases with increased metal-removal rate and increases with workpiece diameter, decreased chip load, and increased concentration of grinding fluid. Power is found to increase with both the metal-removal rate and the amount of metal removed. It increases slightly with workpiece diameter and is affected little by work-material hardness. Surface finish is found to improve with decreased metal-removal rate and decreased chip load. It also is affected little by work diameter or work-material hardness. Fundamental research in the mechanics of wheel wear is supplying much additional information in the study of grinding-wheel wear. The measurement of grinding forces employing a cylindrical grinding dynamometer provides the opportunity for relating the wear of grinding wheels to the basic mechanics of the process through such fundamental quantities as grinding forces, specific energy, and grinding friction. Two additional experimental techniques for the study of chip formation in grinding have also proved to be most useful research tools. A “quick-stop” apparatus is used to freeze the grinding action by accelerating a tiny workpiece almost instantaneously to grinding-wheel speed. Another technique permits the comparison of the shape of the grinding grit and that of the contour of its path through the workpiece by a unique replicating method.


Sign in / Sign up

Export Citation Format

Share Document