Factors Influencing the Performance of Grinding Wheels

1959 ◽  
Vol 81 (3) ◽  
pp. 187-199 ◽  
Author(s):  
E. J. Krabacher

Optimum utilization of grinding wheels can best be achieved if the nature of their performance and wear characteristics, and the factors that affect these characteristics, are understood and applied. As reported in this paper, a comprehensive, continuing, grinding-research program has contributed to such an understanding. A study of the nature of grinding-wheel wear indicates that the grinding-wheel wear curve is similar to those of other cutting tools. It demonstrates further that the type of grinding operation significantly affects the nature of wheel wear. A unique technique has been developed for very accurately measuring grinding-wheel wear. This measured wear may be translated into terms of “grinding ratio,” which is the generally accepted parameter for measuring wheel wear. It is the ratio of the volume of metal removed per unit volume of wheel worn away. Extensive studies have been carried out to determine the effect of mechanical variables on grinding ratio, power required in metal removal, and on surface finish. Experimental findings indicate that grinding ratio decreases with increased metal-removal rate and increases with workpiece diameter, decreased chip load, and increased concentration of grinding fluid. Power is found to increase with both the metal-removal rate and the amount of metal removed. It increases slightly with workpiece diameter and is affected little by work-material hardness. Surface finish is found to improve with decreased metal-removal rate and decreased chip load. It also is affected little by work diameter or work-material hardness. Fundamental research in the mechanics of wheel wear is supplying much additional information in the study of grinding-wheel wear. The measurement of grinding forces employing a cylindrical grinding dynamometer provides the opportunity for relating the wear of grinding wheels to the basic mechanics of the process through such fundamental quantities as grinding forces, specific energy, and grinding friction. Two additional experimental techniques for the study of chip formation in grinding have also proved to be most useful research tools. A “quick-stop” apparatus is used to freeze the grinding action by accelerating a tiny workpiece almost instantaneously to grinding-wheel speed. Another technique permits the comparison of the shape of the grinding grit and that of the contour of its path through the workpiece by a unique replicating method.

1976 ◽  
Vol 98 (3) ◽  
pp. 1048-1052 ◽  
Author(s):  
R. W. Mayne ◽  
S. Malkin

This paper is concerned with the application of nonlinear programming methods to the surface grinding of steels and considers the specific case of plunge grinding. Performance equations based on a model of the process are presented and then optimized. Trade-off curves are established showing the best metal removal rate possible for given constraints on surface quality and at specified conditions of grinding wheel wear. Optimum values for the various parameters in the grinding process are also included. In addition, the sensitivity of steel grinding performance to nonoptimum choices of grinding wheel velocity and diameter is considered.


1967 ◽  
Vol 89 (2) ◽  
pp. 323-327 ◽  
Author(s):  
C. Pollock

This paper reports the results of a systematic test program designed to determine the effect of work area, downfeed rate, and segment grade on performance on vertical spindle surface grinders. Metal removal rate is shown to be a function of volumetric feed rate only. Wheel wear rate is shown to be a linear function of volumetric feed rate with the slope of each line a function of workpiece area. It is also shown that the effect of segment grade is to vertically displace the metal removal rate, wheel wear rate, grinding ratio, and power curves. The vertical displacement of the metal removal rate, wheel wear rate, and grinding ratio becomes progressively less as the hardness of the segment increases. The effect is reversed for power. The practical significance and application of this information are also discussed, showing examples of how it can be applied to solve certain general problems.


Author(s):  
M.A. Younis ◽  
H. Alawi

The high hardness and chemical effects of tool steels M2 and T15 cause a rapid grinding wheel wear and micro structural changes in the ground surface. The performance of sulphur-, wax-, and varnish-impregnated grinding wheels in grinding hardened tool steels M2 and T15 is investigated and compared with the performance of conventional alumina wheels. Impregnation with sulphur had in all cases beneficial effects by decreasing the grinding forces, increasing the maximum metal removal rate, improving surface integrity, and increasing considerably the grinding ratio. It also gave cost saving compared to the plain grinding wheel. The improvement was a result of the sulphur being more efficiently supplied into the chip formation process as compared to using grinding coolant only.


2012 ◽  
Vol 724 ◽  
pp. 363-366
Author(s):  
Xing Hua Yang ◽  
Jian Feng Yang ◽  
Jian Guang Bai ◽  
Sao Chun Xu

The CBN grinding wheels with different porosity, which used 100/120 CBN grind grain and 15μm glass powder as main starting materials, pore creating material as auxiliary material, were prepared by conventional sintering technology; Used GCr15 bearing steel which quenching hardness was 60HRC as ground materials, investigated the effect of porosity of CBN wheel on its cutting ability. In this paper , the metal removal rate was measured by electronic analytical balance, surface roughness of GCr15 was analyzed used LEXT laser scanning confocal microscope and the surface topography of grinding face was observed used scanning electron microscope. The investigated results showed that the metal removal rate acutely increasing with the porosity of wheels increasing in same loading weight, it reached 0.445g/min with 41% porosity in 3500g loading weight, at the same time, the difference of surface roughness caused by variation of porosity of CBN grinding wheel was slight, it did not severely lower machining precision of workpiece.


1987 ◽  
Vol 109 (2) ◽  
pp. 69-75 ◽  
Author(s):  
T. Matsuo ◽  
K. Nakasako

The selection of proper grinding wheels in snagging is an important problem with relation to the automation of this grinding process. In this study, a snagging test under constant load has been made on SUJ 2 bearing steel, 304 stainless steel, and FCD 45 cast iron, using a specially made grinding machine of 40KW. The grinding wheels used were regular alumina, sintered white alumina, 25 percent zirconia-alumina, and silicon carbide resinoid wheels, where wheel diameter is 455 mm. Wheel speed was 67 m/s and work’s traverse speed was 60 mm/s. A 1.0 m long plate workpiece of constant width was used to keep pressure constant during grinding. This experiment allowed the metal removal rate, the wheel wear rate, G-ratio and grinding force to be determined. Thus the effect of wheel type and wheel grade on grinding performance was evident and the selection of the proper wheel has been discussed.


1968 ◽  
Vol 90 (2) ◽  
pp. 365-369 ◽  
Author(s):  
C. Pollock

The primary metal removal mechanisms in vertical spindle abrasive machining are chip removal by firmly bonded abrasive grains in the wheel matrix, and secondary removal by the reuse of loose abrasive between the wheel-work interface. As you increase the strength (go to harder grades) of segments, the secondary metal removal rate tends to remain constant. However, the metal removed by firmly bonded abrasive increases rapidly. Changing from an E to an F grade approximately doubles the primary metal removal rate. Segmental wheels sharpen themselves by two major mechanisms—primary and secondary wear. Primary wear is caused by the common mechanisms of attrition, grain fracture, and bond failure. The secondary mechanism is caused by loose abrasive and metal chips in the wheel-work interface.


2008 ◽  
Vol 389-390 ◽  
pp. 108-113 ◽  
Author(s):  
Hwa Soo Lee ◽  
Takazo Yamada ◽  
Naoyuki Ishida

Surface geometries of grinding wheels vary due to the wear in grinding process. Since the wheel wear patterns are affected by the grinding process, measuring and investigating these patterns quantitatively, grinding process can be evaluated whether appropriate or not. Utilizing a three-dimensional measuring device for wheel surfaces developed so far, this study aims to evaluate wheel wear patterns quantitatively. As the results, applying developed device, it is clarified that wheel wear pattern can be classified and evaluated quantitatively.


Author(s):  
Jozef Peterka ◽  
Jakub Hrbál ◽  
Ivan Buranský ◽  
Jozef Martinovič

Abstract Solid cutting tools are widely applied in the machining of shape parts and mainly fabricated using the grinding operations. Solid cutting tools are of specific geometry and shape. The tool geometry is created by mutual movement grinding wheels and stock. In the grinding of its manufacturing, grinding wheels are worn out gradually with the grinding number increasing. The wearing grinding wheel has a significant influence on the accuracy geometry of the tool produced. The paper focuses on the wear of the grinding wheels based on diamonds, and the grinding wheels based on cubic boron nitride. The wear rate of the grinding wheels is affected by the properties of a grinding wheel, grinding conditions, and type of cutting material. A measure of the ability of a grinding wheel to remove material is given by the Grinding ratio. The grinding ratio (G ratio) is defined as the volume of material removed (Vw) divided by the volume of wheel wear (Vs). Periphery grinding wheels were used in the experiments. Cylindrical face grinding was used for the machining of sintered carbide stock with a diameter of 20 mm. The results of the experiment show that the diamond-based grinding wheels are more suitable for grinding sintered carbide.


Author(s):  
M. J. Jackson

Grinding wheel wear is a significant problem when the wheel has to be continuously dressed in order to maintain high productivity and high quality ground surfaces, especially during the manufacture of camshafts and crankshafts for automotive applications. This paper describes the use of x-rays to specifically engineer bonding systems for conventional abrasive grinding wheels so the wheel wears less during continuous dressing operations. The paper explains how the use of x-rays can be used to develop the next generation of bonding systems that will allow the grinding wheel to be cleaned and dressed with a laser without damaging the structure of the grinding wheel.


Sign in / Sign up

Export Citation Format

Share Document