scholarly journals The possibility of the use of interferon-gamma in Influenza infection

2015 ◽  
Vol 20 (3) ◽  
pp. 11-16
Author(s):  
Vladimir Vladimirovich Nikiforov ◽  
T. V Sologub ◽  
I. I Tokin ◽  
V. V Tsvetkov ◽  
M. K Erofeeva ◽  
...  

Interferon-gamma (IFN-y) is a pleiotropic lymphokine that have multiple effects on the growth and differentiation of various types of cells associated with innate immunity. IFN-y induces differentiation ofmyeloid cells, stimulates the expression of major histocompatibility complex (MHC) class II and class I antigens, it is a potent activator of macrophages which destroy antigenic molecules penetrating the cell. IFN-y is widely used for the treatment of infectious diseases, cancer, autoimmune and allergic diseases. Studies conducted in Research Institute ofInfluenza indicate that drugs IFN-y can be successfully usedfor prevention of influenza and acute respiratory infection (ARI) during the rise of incidence, as well as for the treatment - the first few days/ hours of the onset. The concomitant use of drugs as IFN-a and IFN-y on influenza and ARI can greatly improve the prophylactic and therapeutic efficacy.

1995 ◽  
Vol 182 (6) ◽  
pp. 1793-1799 ◽  
Author(s):  
C A Siegrist ◽  
E Martinez-Soria ◽  
I Kern ◽  
B Mach

Presentation of exogenous protein antigens to T lymphocytes is based on the intersection of two complex pathways: (a) synthesis, assembly, and transport of major histocompatibility complex (MHC) class II-invariant chain complexes from the endoplasmic reticulum to a specialized endosomal compartment, and (b) endocytosis, denaturation, and proteolysis of antigens followed by loading of antigenic peptides onto newly synthesized MHC class II molecules. It is believed that expression of MHC class II heterodimers, invariant chain and human leukocyte antigen-DM is both necessary and sufficient to reconstitute a functional MHC class II loading compartment in antigen-presenting cells. Expression of each of these essential molecules is under the control of the MHC class II transactivator CIITA. Unexpectedly, however, whereas interferon gamma stimulation does confer effective antigen-processing function to nonprofessional antigen presenting cells, such as melanoma cells, expression of the CIITA transactivator alone is not sufficient. Activation of antigen-specific T cells thus requires additional CIITA-independent factor(s), and such factor(s) can be induced by interferon gamma.


1993 ◽  
Vol 177 (3) ◽  
pp. 583-596 ◽  
Author(s):  
P Romagnoli ◽  
C Layet ◽  
J Yewdell ◽  
O Bakke ◽  
R N Germain

Invariant chain (Ii), which associates with major histocompatibility complex (MHC) class II molecules in the endoplasmic reticulum, contains a targeting signal for transport to intracellular vesicles in the endocytic pathway. The characteristics of the target vesicles and the relationship between Ii structure and class II localization in distinct endosomal subcompartments have not been well defined. We demonstrate here that in transiently transfected COS cells expressing high levels of the p31 or p41 forms of Ii, uncleaved Ii is transported to and accumulates in transferrin-accessible (early) endosomes. Coexpressed MHC class II is also found in this same compartment. These early endosomes show altered morphology and a slower rate of content movement to later parts of the endocytic pathway. At more moderate levels of Ii expression, or after removal of a highly conserved region in the cytoplasmic tail of Ii, coexpressed class II molecules are found primarily in vesicles with the characteristics of late endosomes/prelysosomes. The Ii chains in these late endocytic vesicles have undergone proteolytic cleavage in the lumenal region postulated to control MHC class II peptide binding. These data indicate that the association of class II with Ii results in initial movement to early endosomes. At high levels of Ii expression, egress to later endocytic compartments is delayed and class II-Ii complexes accumulate together with endocytosed material. At lower levels of Ii expression, class II-Ii complexes are found primarily in late endosomes/prelysosomes. These data provide evidence that the route of class II transport to the site of antigen processing and loading involves movement through early endosomes to late endosomes/prelysosomes. Our results also reveal an unexpected ability of intact Ii to modify the structure and function of the early endosomal compartment, which may play a role in regulating this processing pathway.


2003 ◽  
Vol 14 (8) ◽  
pp. 3378-3388 ◽  
Author(s):  
Nicole N. van der Wel ◽  
Masahiko Sugita ◽  
Donna M. Fluitsma ◽  
Xaiochun Cao ◽  
Gerty Schreibelt ◽  
...  

The maturation of dendritic cells is accompanied by the redistribution of major histocompatibility complex (MHC) class II molecules from the lysosomal MHC class II compartment to the plasma membrane to mediate presentation of peptide antigens. Besides MHC molecules, dendritic cells also express CD1 molecules that mediate presentation of lipid antigens. Herein, we show that in human monocyte-derived dendritic cells, unlike MHC class II, the steady-state distribution of lysosomal CD1b and CD1c isoforms was unperturbed in response to lipopolysaccharide-induced maturation. However, the lysosomes in these cells underwent a dramatic reorganization into electron dense tubules with altered lysosomal protein composition. These structures matured into novel and morphologically unique compartments, here termed mature dendritic cell lysosomes (MDL). Furthermore, we show that upon activation mature dendritic cells do not lose their ability of efficient clathrin-mediated endocytosis as demonstrated for CD1b and transferrin receptor molecules. Thus, the constitutive endocytosis of CD1b molecules and the differential sorting of MHC class II from lysosomes separate peptide- and lipid antigen-presenting molecules during dendritic cell maturation.


1996 ◽  
Vol 16 (9) ◽  
pp. 4683-4690 ◽  
Author(s):  
N Jabrane-Ferrat ◽  
J D Fontes ◽  
J M Boss ◽  
B M Peterlin

The S box (also known as at the H, W, or Z box) is the 5'-most element of the conserved upstream sequences in promoters of major histocompatibility complex class II genes. It is important for their B-cell-specific and interferon gamma-inducible expression. In this study, we demonstrate that the S box represents a duplication of the downstream X box. First, RFX, which is composed of the RFX5-p36 heterodimer that binds to the X box, also binds to the S box and its 5'-flanking sequence. Second, NF-Y, which binds to the Y box and increases interactions between RFX and the X box, also increases the binding of RFX to the S box. Third, RFXs bound to S and X boxes interact with each other in a spatially constrained manner. Finally, we confirmed these protein-protein and protein-DNA interactions by expressing a hybrid RFX5-VP16 protein in cells. We conclude that RFX binds to S and X boxes and that complex interactions between RFX and NF-Y direct B-cell-specific and interferon gamma-inducible expression or major histocompatibility complex class II genes.


2010 ◽  
Vol 78 (12) ◽  
pp. 5138-5150 ◽  
Author(s):  
Holger Rüssmann ◽  
Klaus Panthel ◽  
Brigitte Köhn ◽  
Stefan Jellbauer ◽  
Sebastian E. Winter ◽  
...  

ABSTRACT Extracellular Yersinia pseudotuberculosis employs a type III secretion system (T3SS) for translocating virulence factors (Yersinia outer proteins [Yops]) directly into the cytosol of eukaryotic cells. Recently, we used YopE as a carrier molecule for T3SS-dependent secretion and translocation of listeriolysin O (LLO) from Listeria monocytogenes. We demonstrated that translocation of chimeric YopE/LLO into the cytosol of macrophages by Yersinia results in the induction of a codominant antigen-specific CD4 and CD8 T-cell response in orally immunized mice. In this study, we addressed the requirements for processing and major histocompatibility complex (MHC) class II presentation of chimeric YopE proteins translocated into the cytosol of macrophages by the Yersinia T3SS. Our data demonstrate the ability of Yersinia to counteract exogenous MHC class II antigen presentation of secreted hybrid YopE by the action of wild-type YopE and YopH. In the absence of exogenous MHC class II antigen presentation, an alternative pathway was identified for YopE fusion proteins originating in the cytosol. This endogenous antigen-processing pathway was sensitive to inhibitors of phagolysosomal acidification and macroautophagy, but it did not require the function either of the proteasome or of transporters associated with antigen processing. Thus, by an autophagy-dependent mechanism, macrophages are able to compensate for the YopE/YopH-mediated inhibition of the endosomal MHC class II antigen presentation pathway for exogenous antigens. This is the first report demonstrating that autophagy might enable the host to mount an MHC class II-restricted CD4 T-cell response against translocated bacterial virulence factors. We provide critical new insights into the interaction between the mammalian immune system and a human pathogen.


2008 ◽  
Vol 28 (16) ◽  
pp. 5014-5026 ◽  
Author(s):  
Lei Jin ◽  
Paul M. Waterman ◽  
Karen R. Jonscher ◽  
Cindy M. Short ◽  
Nichole A. Reisdorph ◽  
...  

ABSTRACT Although the best-defined function of type II major histocompatibility complex (MHC-II) is presentation of antigenic peptides to T lymphocytes, these molecules can also transduce signals leading alternatively to cell activation or apoptotic death. MHC-II is a heterodimer of two transmembrane proteins, each containing a short cytoplasmic tail that is dispensable for transduction of death signals. This suggests the function of an undefined MHC-II-associated transducer in signaling the death response. Here we describe a novel plasma membrane tetraspanner (MPYS) that is associated with MHC-II and mediates its transduction of death signals. MPYS is unusual among tetraspanners in containing an extended C-terminal cytoplasmic tail (∼140 amino acids) with multiple embedded signaling motifs. MPYS is tyrosine phosphorylated upon MHC-II aggregation and associates with inositol lipid and tyrosine phosphatases. Finally, MHC class II-mediated cell death signaling requires MPYS-dependent activation of the extracellular signal-regulated kinase signaling pathway.


1992 ◽  
Vol 175 (2) ◽  
pp. 613-616 ◽  
Author(s):  
W Mourad ◽  
K Mehindate ◽  
T J Schall ◽  
S R McColl

Cells in the rheumatoid synovium express high levels of major histocompatibility complex (MHC) class II molecules in vivo. We have therefore examined the ability of engagement of MHC class II molecules by the superantigen Staphylococcal enterotoxin A (SEA) to activate interleukin 6 (IL-6) and IL-8 gene expression in type B synoviocytes isolated from patients with rheumatoid arthritis. SEA had a minimal or undetectable effect on the expression of either gene in resting synoviocytes, as determined by Northern blot and specific enzyme-linked immunosorbent assay. However, induction of MHC class II molecule expression after treatment of synoviocytes with interferon gamma (IFN-gamma) enabled the cells to respond to SEA in a dose-dependent manner, resulting in an increase in both the level of steady-state mRNA for IL-6 and IL-8, and the release of these cytokines into the supernatant. IFN-gamma by itself had no effect on the expression of either cytokine. Pretreatment of the cells with the transcription inhibitor actinomycin D prevented the increase in cytokine mRNA induced by SEA, whereas cycloheximide superinduced mRNA for both cytokines after stimulation by SEA. Taken together, these results indicate that signaling through MHC class II molecules may represent a novel mechanism by which inflammatory cytokine production is regulated in type B rheumatoid synoviocytes, and potentially provides insight into the manner by which superantigens may initiate and/or propagate autoimmune diseases.


1992 ◽  
Vol 176 (1) ◽  
pp. 275-280 ◽  
Author(s):  
M A Blackman ◽  
F E Lund ◽  
S Surman ◽  
R B Corley ◽  
D L Woodland

It has been established that at least some V beta 17+ T cells interact with an endogenous superantigen encoded by the murine retrovirus, Mtv-9. To analyze the role of major histocompatibility complex (MHC) class II molecules in presenting the Mtv-9 encoded superantigen, vSAG-9 to V beta 17+ hybridomas, a panel of nine hybridomas was tested for their ability to respond to A20/2J (H-2d) and LBK (H-2a) cells which had been transfected with the vSAG-9 gene. Whereas some of the hybridomas recognized vSAG-9 exclusively in the context of H-2a, other hybridomas recognized vSAG-9 exclusively in the context of H-2d or in the context of both H-2d and H-2a. These results suggest that: (a) the class II MHC molecule plays a direct role in the recognition of retroviral superantigen by T cells, rather than serving simply as a platform for presentation; and, (b) it is likely that components of the TCR other than V beta are involved in the vSAG-9/TCR/class II interaction.


Sign in / Sign up

Export Citation Format

Share Document