scholarly journals Electromagnetic fields related to high speed transportation systems

2018 ◽  
Vol 4 (2) ◽  
pp. 152-166 ◽  
Author(s):  
Roland Kircher ◽  
Johannes Klühspies ◽  
Ryszard Palka ◽  
Eckert Fritz ◽  
Kenji Eiler ◽  
...  

Issue: The potential health risks on passengers and the environment related to electromagnetic fields caused by the operation of electrically driven high speed transportation systems has become a major issue. Especially the magnetic flux density or induction can generate physiological effects in body tissues. Aim: In this paper, we compare calculated and experimental values of electromagnetic fields in rail-wheel systems such as ICE with the Maglev-systems Transrapid and the JR Maglev-system, based on available data. Method: To estimate the impact on passengers, the field contributions generated by the power supply system as well as by the drive and suspension systems are taken into account. For the comparison, the peak values of the electromagnetic fields have been considered. Results: The results show, that there are no health risks from the electric fields. Regarding the magnetic induction, the calculated the peak values remain well below the limits given by national regulations. In the case of the Transrapid and the JR Maglev system, the measured peak values in the environment and inside the vehicle depend on the levitation and the guidance technology and the geometrical parameters. The JR Maglev system requires effective magnetic shielding measures which are connected with heavy materials. Since such materials may have a negative influence on the energy balance and the economics of operation, R&D efforts are focusing on the optimization of materials and the structure of shields. Conclusion: In high speed transportation systems there are no potential risks from electrical fields. Regarding magnetic fields, the induction generated by the power supply and the drive system remain well below the frequency dependent limits. The situation is different for magnetic levitation systems, depending on the suspension and guidance technology. Especially the JR Maglev requires effective shielding measures. The shielding materials may have a negative impact on the energy balance.

2018 ◽  
Vol 4 (2) ◽  
pp. 141-151 ◽  
Author(s):  
Qingying Lai ◽  
Jun Liu ◽  
Lingyun Meng ◽  
Xiaofeng Chai ◽  
Qunyan Wang ◽  
...  

Background: The Auxiliary Stopping Area (ASA) is the special section that possesses power supply rail and personnel evacuation facilities, whose quantities and locations in a line are of great significance to reduce construction cost and improve transportation efficiency for the middle-to-high speed maglev. Aim: This paper focuses on optimizing the length and location of the ASA for the middle-to-high speed maglev system to improve the robustness of maglev line. Methods of the studies: Two evaluation indexes which reflect the ASA restricts on the train operation process was proposed. A model for optimizing the setting of the ASA is constructed, and solved by the genetic algorithm. Results: The result of numerical examples shows that the proposed method can effectively improve the performances of the ASA. Conclusion: This paper proposed two indexes to reflect the impact of station settings on train operations, which provides a method to optimize the ASA from qualitative optimization to quantitative optimization.


Author(s):  
Adrian Hellman ◽  
Tashi Ngamdung

The United States Department of Transportation’s (USDOT) Research and Innovative Technology Administration’s John A. Volpe National Transportation Systems Center (Volpe Center), under the direction of the USDOT Federal Railroad Administration (FRA) Office of Research and Development (ORD), conducted a reliability analysis of the four-quadrant gate/vehicle detection equipment installed on the potential high-speed rail (HSR) corridor between Chicago and St Louis. A total of 69 highway-rail grade crossings on a 121-mile (195 km) segment of the 280-mile corridor were equipped with four-quadrant gates and inductive loop vehicle detection technology. This segment, between Mazonia and Springfield Illinois, may eventually carry passenger trains at speeds up to 110 mph (177 km/h), including at many of the highway-rail grade crossings. The analysis was based on maintenance records obtained from the Union Pacific Railroad (UPRR), the owner and operator of the rail line. The results were used to assess the impact of the equipment reliability on the proposed HSR timetable. The Volpe Center study showed that the total average delay to the five scheduled daily high-speed passenger roundtrips was an estimated 10.5 minutes, or approximately one minute per train. Overall, extensive analysis of the trouble ticket data showed that the four-quadrant gate and vehicle detection equipment had a minimal direct impact on the frequency and duration of grade crossing malfunctions.


Author(s):  
Dragan C. Lukić ◽  
Elefterija Zlatanović

The development of megacities, with a large population, imposes increasing mobility in order tomaintain the economic and social development. There is a great necessity for a contemporary andnew infrastructure at the urban, suburban, intercity, and international level. At the same time, thereis also a need to improve transport in terms of environmental protection, to reduce effects such asnoise, pollution, and congestion. The latest researches show that by 2050, carbon dioxide (CO2)emissions need to be reduced by 75%. This reduction can be achieved only by applying newtechnologies of transportation systems. One of these technologies, which is shown in this work, isthe Maglev system for trains of high speed.


2021 ◽  
Author(s):  
MingChao Du ◽  
Zengliang Li ◽  
Xiangwei Dong ◽  
Chunyong Fan ◽  
Jiaqi Che ◽  
...  

Abstract The erosion mechanism and deformation characteristics of rhomboid-shaped particle impacting metal beam are studied. Physical experiments of rhomboid-shaped particle impacting cantilever beam and fixed-fixed beam are carried out respectively. The erosion behavior of particles and deformation characteristics of beam are captured by high-speed imaging system. Meanwhile, the numerical models of rhomboid-shaped particle impacting beam, based on FEM-SPH coupled method, are established. The effects of the geometrical parameters of the beam, the incident conditions of particle and the impact position on the elastic-plastic deformation of beam and rebound behavior of particles are further analyzed. The results show: (1) The width of cantilever beam affects its maximum deflection and deformation; (2) The threshold value of breakdown velocity is controlled by the substrate size; (3) The increment of internal energy is basically independent of the impact position; (4) The deflection value at impact position of beam is maximized under the critical impact condition.


Author(s):  
Petar Tomov ◽  
Loic Pora ◽  
Richard Paridaens ◽  
Magne Théodore ◽  
Mohamed Kebdani ◽  
...  

Abstract The inducers increase the pressure available at the inlet of the impellers of centrifugal pumps. This technological solution may induce instabilities, such as pre-rotating flow at partial flow rates. The scientific literature offers studies on the cavitation in the inducers, as well as on the associated instabilities. However, studies describing devices that improve the behavior in these unstable regimes are rare. This is particularly true for fluids like aviation fuels or liquids with dissolved gases. In the present work we expose, an experimental study for two axial inducers carried out at low flow rates in cavitating and non-cavitating regimes in a closed loop equipped with a transparent test pipe. The working liquid is water with and without dissolved CO2. We employ a camera and a high-speed camera to take the photographs of the dynamics of the cavitation structures. The experimental campaign provided results of head breakdown comparison. The added dissolved CO2 gas at a concentration of 300 mg/L does not change the overall inducers' performance in non-cavitating regime. The paper presents also the impact of some of inducers' geometrical parameters on their cavitating performance. The authors observed pre-rotating flow instability, which they tried to decrease by incorporating a grooved ring into the inlet side of the inducers. It is found that pre-rotating structures are much less developed in the upstream when a grooved ring is employed.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8196
Author(s):  
Aleksander Jakubowski ◽  
Leszek Jarzebowicz ◽  
Mikołaj Bartłomiejczyk ◽  
Jacek Skibicki ◽  
Slawomir Judek ◽  
...  

The paper proposes a novel approach to modeling electrified transportation systems. The proposed solution reflects the mechanical dynamics of vehicles as well as the distribution and losses of electric supply. Moreover, energy conversion losses between the mechanical and electrical subsystems and their bilateral influences are included. Such a complete model makes it possible to replicate, e.g., the impact of voltage drops on vehicle acceleration or the necessity of partial disposal of regenerative braking energy due to temporary lack of power transmission capability. The modeling methodology uses a flexible twin data-bus structure, which poses no limitation on the number of vehicles and enables modeling complex traction power supply structures. The proposed solution is suitable for various electrified transportation systems including suburban and urban systems. The modeling methodology is applicable i.a. to Matlab/Simulink, which makes it broadly available and customizable, and provides short computation time. The applicability and accuracy of the method were verified by comparing simulation and measurement results on an exemplary trolleybus system operating in Pilsen, Czech Republic. Simulation of daily operation of an area including four supply sections and maximal simultaneous number of nine vehicles showed a good conformance with the measured data, with the difference in the total consumed energy not exceeding 5%.


2018 ◽  
Vol 20 (6) ◽  
pp. 105
Author(s):  
Zhongwei Feng ◽  
Xing Fang ◽  
Hongmei Li ◽  
Aijun Cheng ◽  
Yongjie Pan

2003 ◽  
Vol 31 (3) ◽  
pp. 197-254 ◽  
Author(s):  
Riadh W. Y. Habash ◽  
Lynn M. Brodsky ◽  
William Leiss ◽  
Daniel Krewski ◽  
Michael Repacholi

Sign in / Sign up

Export Citation Format

Share Document