Length‐Scale‐Dependent Relationships between VS30 and Topographic Slopes in Southern California

2019 ◽  
Vol 109 (6) ◽  
pp. 2614-2625
Author(s):  
Jessica Lin ◽  
Seulgi Moon ◽  
Alan Yong ◽  
Lingsen Meng ◽  
Paul Davis

Abstract In engineering seismology, the time‐averaged shear‐wave velocity (VS) of the upper 30 m of the crust (VS30) is the primary parameter used in ground‐motion models to predict seismic site effects. VS30 is typically derived from in situ recordings of VS, although proxy‐based approaches (using geologic and/or geomorphometric classifications) are provisionally adopted when measurement‐based VS30 are sparse or not readily available. Despite the acceptance of proxy approaches, there are limited studies that examine the empirical relationships between VS30 and topographic attributes measured from various length scales and different resolutions of the digital elevation model. In this study, we examine the relationships between compiled VS30 measurements from 218 sites in southern California and topographic metrics of slope and relief measured over various length scales. We find that the correlations between topographic metrics and VS30 are weak but statistically significant. The correlations are improved when topographic slopes and relief are measured over length scales longer than typical hillslopes and VS30 sites are separated by different geologic groups. This is likely because VS30, especially on the rock sites, is better reflected in topographic metrics that capture large‐scale topographic relief, as well as landscape positions such as hilltops and valley bottoms.

Author(s):  
Sandra Cristina Deodoro ◽  
William Zanete Bertolini ◽  
Plinio da Costa Temba

Quaternary formations (detrital and weathered materials) are an important natural resource for different areas of scientific investigation, from understanding their relation to erosive processes and morphodynamic processes that create landforms or to understanding the history of the first human settlements (geoarcheology). Quaternary coverings can be formed in situ or be transported by external geologic agents. Regarding soils, Quaternary formations are related to landscape topography and are transformed according to the characteristics of this topography. Hence, classifying and mapping these soils is not always easy. The present article aims to map the Quaternary formations along a stretch of the Uruguay River basin  known as Volta Grande (SC/RS-Brazil), by using  topographic attributes derived from the SRTM GL1-Up Sampled digital elevation model, soil particle-size analysis, and a generated Multiresolution Index of Valley Bottom Flatness (MRVBF) index . The results of the analysis show that: (i) colluvium is the predominant Quaternary formation in the study area; (ii) there is a predominance of clay, corroborating previous studies of the region; (iii) the spatial distribution of the study area’s  Quaternary formations reflect local slope dynamics based on morphology and topographic position; and, (iv) the existence of colluvium-alluvium on the Uruguay River’s banks indicates that slope attributes contributed to the pedogeomorphological dynamics of the study area and not only fluvial dynamics. Based on the results, the methodology applied in this study might be useful for pedogeomorphological studies, notably in the analysis and mapping of Quaternary formations, despite some of its limitations.


2021 ◽  
Vol 13 (2) ◽  
pp. 320
Author(s):  
José P. Granadeiro ◽  
João Belo ◽  
Mohamed Henriques ◽  
João Catalão ◽  
Teresa Catry

Intertidal areas provide key ecosystem services but are declining worldwide. Digital elevation models (DEMs) are important tools to monitor the evolution of such areas. In this study, we aim at (i) estimating the intertidal topography based on an established pixel-wise algorithm, from Sentinel-2 MultiSpectral Instrument scenes, (ii) implementing a set of procedures to improve the quality of such estimation, and (iii) estimating the exposure period of the intertidal area of the Bijagós Archipelago, Guinea-Bissau. We first propose a four-parameter logistic regression to estimate intertidal topography. Afterwards, we develop a novel method to estimate tide-stage lags in the area covered by a Sentinel-2 scene to correct for geographical bias in topographic estimation resulting from differences in water height within each image. Our method searches for the minimum differences in height estimates obtained from rising and ebbing tides separately, enabling the estimation of cotidal lines. Tidal-stage differences estimated closely matched those published by official authorities. We re-estimated pixel heights from which we produced a model of intertidal exposure period. We obtained a high correlation between predicted and in-situ measurements of exposure period. We highlight the importance of remote sensing to deliver large-scale intertidal DEM and tide-stage data, with relevance for coastal safety, ecology and biodiversity conservation.


2019 ◽  
Vol 11 (9) ◽  
pp. 1096 ◽  
Author(s):  
Hiroyuki Miura

Rapid identification of affected areas and volumes in a large-scale debris flow disaster is important for early-stage recovery and debris management planning. This study introduces a methodology for fusion analysis of optical satellite images and digital elevation model (DEM) for simplified quantification of volumes in a debris flow event. The LiDAR data, the pre- and post-event Sentinel-2 images and the pre-event DEM in Hiroshima, Japan affected by the debris flow disaster on July 2018 are analyzed in this study. Erosion depth by the debris flows is empirically modeled from the pre- and post-event LiDAR-derived DEMs. Erosion areas are detected from the change detection of the satellite images and the DEM-based debris flow propagation analysis by providing predefined sources. The volumes and their pattern are estimated from the detected erosion areas by multiplying the empirical erosion depth. The result of the volume estimations show good agreement with the LiDAR-derived volumes.


Geomorphology ◽  
2020 ◽  
Vol 369 ◽  
pp. 107374
Author(s):  
Shuyan Zhang ◽  
Yong Ma ◽  
Fu Chen ◽  
Jianbo Liu ◽  
Fulong Chen ◽  
...  

2020 ◽  
Vol 12 (3) ◽  
pp. 561 ◽  
Author(s):  
Bruno Adriano ◽  
Naoto Yokoya ◽  
Hiroyuki Miura ◽  
Masashi Matsuoka ◽  
Shunichi Koshimura

The rapid and accurate mapping of large-scale landslides and other mass movement disasters is crucial for prompt disaster response efforts and immediate recovery planning. As such, remote sensing information, especially from synthetic aperture radar (SAR) sensors, has significant advantages over cloud-covered optical imagery and conventional field survey campaigns. In this work, we introduced an integrated pixel-object image analysis framework for landslide recognition using SAR data. The robustness of our proposed methodology was demonstrated by mapping two different source-induced landslide events, namely, the debris flows following the torrential rainfall that fell over Hiroshima, Japan, in early July 2018 and the coseismic landslide that followed the 2018 Mw6.7 Hokkaido earthquake. For both events, only a pair of SAR images acquired before and after each disaster by the Advanced Land Observing Satellite-2 (ALOS-2) was used. Additional information, such as digital elevation model (DEM) and land cover information, was employed only to constrain the damage detected in the affected areas. We verified the accuracy of our method by comparing it with the available reference data. The detection results showed an acceptable correlation with the reference data in terms of the locations of damage. Numerical evaluations indicated that our methodology could detect landslides with an accuracy exceeding 80%. In addition, the kappa coefficients for the Hiroshima and Hokkaido events were 0.30 and 0.47, respectively.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2160
Author(s):  
Daniel Kibirige ◽  
Endre Dobos

Soil moisture (SM) is a key variable in the climate system and a key parameter in earth surface processes. This study aimed to test the citizen observatory (CO) data to develop a method to estimate surface SM distribution using Sentinel-1B C-band Synthetic Aperture Radar (SAR) and Landsat 8 data; acquired between January 2019 and June 2019. An agricultural region of Tard in western Hungary was chosen as the study area. In situ soil moisture measurements in the uppermost 10 cm were carried out in 36 test fields simultaneously with SAR data acquisition. The effects of environmental covariates and the backscattering coefficient on SM were analyzed to perform SM estimation procedures. Three approaches were developed and compared for a continuous four-month period, using multiple regression analysis, regression-kriging and cokriging with the digital elevation model (DEM), and Sentinel-1B C-band and Landsat 8 images. CO data were evaluated over the landscape by expert knowledge and found to be representative of the major SM distribution processes but also presenting some indifferent short-range variability that was difficult to explain at this scale. The proposed models were evaluated using statistical metrics: The coefficient of determination (R2) and root mean square error (RMSE). Multiple linear regression provides more realistic spatial patterns over the landscape, even in a data-poor environment. Regression kriging was found to be a potential tool to refine the results, while ordinary cokriging was found to be less effective. The obtained results showed that CO data complemented with Sentinel-1B SAR, Landsat 8, and terrain data has the potential to estimate and map soil moisture content.


2010 ◽  
Vol 10 (2) ◽  
pp. 339-352 ◽  
Author(s):  
H. Frey ◽  
W. Haeberli ◽  
A. Linsbauer ◽  
C. Huggel ◽  
F. Paul

Abstract. In the course of glacier retreat, new glacier lakes can develop. As such lakes can be a source of natural hazards, strategies for predicting future glacier lake formation are important for an early planning of safety measures. In this article, a multi-level strategy for the identification of overdeepened parts of the glacier beds and, hence, sites with potential future lake formation, is presented. At the first two of the four levels of this strategy, glacier bed overdeepenings are estimated qualitatively and over large regions based on a digital elevation model (DEM) and digital glacier outlines. On level 3, more detailed and laborious models are applied for modeling the glacier bed topography over smaller regions; and on level 4, special situations must be investigated in-situ with detailed measurements such as geophysical soundings. The approaches of the strategy are validated using historical data from Trift Glacier, where a lake formed over the past decade. Scenarios of future glacier lakes are shown for the two test regions Aletsch and Bernina in the Swiss Alps. In the Bernina region, potential future lake outbursts are modeled, using a GIS-based hydrological flow routing model. As shown by a corresponding test, the ASTER GDEM and the SRTM DEM are both suitable to be used within the proposed strategy. Application of this strategy in other mountain regions of the world is therefore possible as well.


2014 ◽  
Vol 571-572 ◽  
pp. 792-795
Author(s):  
Xiao Qing Zhang ◽  
Kun Hua Wu

Floods usually cause large-scale loss of human life and wide spread damage to properties. Determining flood zone is the core of flood damage assessment and flood control decision. The aim of this paper is to delineate the flood inundation area and estimate economic losses arising from flood using the digital elevation model data and geographic information system techniques. Flood extent estimation showed that digital elevation model data is very precious to model inundation, however, in order to be spatially explicit flood model, high resolution DEM is necessary. Finally, Analyses for the submergence area calculation accuracy.


2022 ◽  
Vol 77 (1) ◽  
pp. 21-37
Author(s):  
Alessandro De Pedrini ◽  
Christian Ambrosi ◽  
Cristian Scapozza

Abstract. As a contribution to the knowledge of historical rockslides, this research focuses on the historical reconstruction, field mapping, and simulation of the expansion, through numerical modelling, of the 30 September 1513 Monte Crenone rock avalanche. Earth observation in 2-D and 3-D, as well as direct in situ field mapping, allowed the detachment zone and the perimeter and volume of the accumulation to be determined. Thanks to the reconstruction of the post-event digital elevation model based on historical topographic maps and the numerical modelling with the RAMMS::DEBRISFLOW software, the dynamics and runout of the rock avalanche were calibrated and reconstructed. The reconstruction of the runout model allowed confirmation of the historical data concerning this event, particularly the damming of the valley floor and the lake formation up to an elevation of 390 m a.s.l., which generated an enormous flood by dam breaching on 20 May 1515, known as the “Buzza di Biasca”.


2017 ◽  
Vol 47 (2) ◽  
pp. 657
Author(s):  
E. Simou ◽  
V. Karagkouni ◽  
G. Papantoniou ◽  
D. Papanikolaou ◽  
P. Nomikou

Kozani Basin is located in northern-central Greece and constitutes the southernmost of the Plio-Pleistocene basins of western Macedonia. Quantitative and qualitative analysis of morphological slope values, as well as the analysis of the drainage pattern in Kozani Basin confirms that the current topographic relief reflects intense neotectonic activity. Synthetic Morphotectonic Map of the under study area was carried out by means of the combined use of: (a) Digital Elevation Model (DEM), (b) Slope Distribution Map, (c) Morphological Slope Map and (d) Drainage Pattern Map. The composition of the digital modelling in conjunction with the regional geological setting, allows the identification of the main morphological discontinuities and lineaments that result from morphotectonic interpretation. The high morphological slope values indicate well-defined morphotectonic features, which mainly trend NE - SW and, secondarily, NW - SE. Distinct tectonic structures are mostly recognized in the SE margin of Kozani Basin, which is characterized by intense topographic relief. The main large-scale tectonic structure trends NE - SW and corresponds to the major Aliakmonas marginal fault zone that bounds the Kozani basin to the south. On the other hand, the NW margin’s features are indiscernible; thus, the criteria for their recognition are based on the existence of the river terraces, which reflect the tectonic control. The results of our studies are presented on the Morphotectonic Map, which is followed by our 3D model of Kozani Basin.


Sign in / Sign up

Export Citation Format

Share Document