3D Crustal Structure and Seismicity Characteristics of Changning–Xingwen Area in the Southwestern Sichuan Basin, China

2020 ◽  
Vol 110 (5) ◽  
pp. 2154-2167 ◽  
Author(s):  
Kezhen Zuo ◽  
Cuiping Zhao ◽  
Haijiang Zhang

ABSTRACT Using seismic data recorded on permanent and temporary stations around the Changning area in the Sichuan basin, the high-resolution 3D crustal VP, VS, VP/VS models and earthquake locations in the Changning–Xingwen area are obtained using the VP/VS model consistency-constrained double-difference seismic tomography method. The results show that crustal structures in the source area of the 2019 Ms 6.0 Changning earthquake have significant variations, especially in the depth of 0–7 km. Seismic activity in the Shuanghe and Yutan anticline areas before the Ms 6.0 Changning earthquake outlined several northeast-trending stripes, implying pre-existing small-scale faults that are perpendicular to the major northwest-striking faults in the Changning–Shuanghe anticline system. We found that the Ms 6.0 Changning earthquake broke through these pre-existing small-scale faults and extended from the Shuanghe to the Yutan anticlines. Both the rupture process and aftershock activity were influenced by the pre-existing small-scale faults. Most earthquakes within the Changning area are located in a slant zone that gradually deepens from the Shuanghe anticline on the east to the Yutan anticline on the west with the maximum depth from 5 to 10 km, which are associated with obvious high-VS and low-VP/VS features. The relocated seismic clusters in the Luochang–Jianwu syncline area have different strikes and dips, which are mainly located at the edge of low-velocity anomaly bodies and correspond to the low-VP/VS area.

2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Xiangwei Yu ◽  
Wenbo Zhang ◽  
Yun-tai Chen

In this study a new tomographic method is applied to over 43,400 high-quality absolute direct P arrival times and 200,660 relative P arrival times to determine detailed 3D crustal velocity structures as well as the absolute and relative hypocenter parameters of 2809 seismic events under the Beijing-Tianjin-Tangshan region. The inferred velocity model of the upper crust correlates well with the surface geological and topographic features in the BTT region. In the North China Basin, the depression and uplift areas are imaged as slow and fast velocities, respectively. After relocation, the double-difference tomography method provides a sharp picture of the seismicity in the BTT region, which is concentrated along with the major faults. A broad low-velocity anomaly exists in Tangshan and surrounding area from 20 km down to 30 km depth. Our results suggest that the top boundary of low-velocity anomalies is at about 25.4 km depth. The event relocations inverted from double-difference tomography are clusted tightly along the Tangshan-Dacheng Fault and form three clusters on the vertical slice. The maximum focal depth after relocation is about 25 km depth in the Tangshan area.


2018 ◽  
Vol 6 (4) ◽  
pp. SM39-SM50
Author(s):  
Jingbo Wang ◽  
Zhongshan Qi ◽  
Penggui Jing ◽  
Tianfa Zheng ◽  
Yanqi Li ◽  
...  

Geologic studies indicate that the platform-margin reef-shallow facies in Permo-Triassic marine strata in the Micang-Dabashan foothill belt in the Sichuan Basin are favorable exploration targets for oil and gas exploration. However, the typical dual-complexity problem (complex surface condition and subsurface structure) brings a great challenge for seismic technology targeting of those potential oil and gas reservoirs. To overcome this problem, varieties of advanced seismic acquisition and processing methods have been used to improve the imaging quality of piedmont seismic data since 2000. Some improvements have been achieved: The reflection waves from the far offset and deep layer can be acquired in shot gathers from limestone outcropped areas, and the signal-to-noise ratio (S/N) of reflection and diffraction waves in the stack section has been enhanced significantly so as to reveal amounts of valuable geologic information. The resolution and the S/N of seismic migration imaging for the strong fold zone in marine strata have been improved partially, so that the structure of the step-fault zone and the enveloping of gypsum rock are clearer than those revealed by the old seismic section. Even so, actual drilling data demonstrate that the subsurface structures of the foothill belt are far more complex than those revealed by the current seismic imaging results. Therefore, postdrilling evaluation for the validity of seismic techniques implemented in the Nanjiang and Zhenba piedmont zone has been carried out. The results indicate that the current acquisition scheme and processing workflow cannot completely fulfill the requirements of high-precision velocity modeling and migration imaging of complex structures (such as footwalls of thrust fault and small-scale fault blocks) in the piedmont zone, especially when the rugged surface and the widespread limestone outcrop appear simultaneously. Finally, we have developed some potential needs of seismic theories and techniques in the foothill belt, including seismic wave propagation, acquisition, and processing technology.


2019 ◽  
Vol 132 (3-4) ◽  
pp. 668-686 ◽  
Author(s):  
Hanyu Huang ◽  
Dengfa He ◽  
Di Li ◽  
Yingqiang Li

Abstract The tectonic setting of the southwestern Sichuan foreland basin, China, changed rapidly during the Paleogene period, and records from this period may provide crucial information about the formation and tectonic processes that affected the Sichuan Basin. To constrain the provenance and to reconstruct the paleogeography of the Paleogene successions, we conducted a detailed analysis of the petrology, geochronology, and sedimentary facies of rocks from the southwestern Sichuan foreland basin. The detrital components of the three analyzed sandstone samples indicate moderately to highly mature sediment that was primarily derived from a recycled orogen provenance. Five major age populations were identified in the U-Pb age spectra: Neoarchean to Siderian (2524–2469 Ma and 2019–1703 Ma), Neoproterozoic (Tonian to Cryogenian, 946–653 Ma), Ordovician to Carboniferous (Katian to lower Pennsylvanian, 448–321 Ma), and Carboniferous to Triassic (306–201 Ma). Each of these age populations corresponds to one or several potential sources around the southwestern Sichuan foreland basin. A multidimensional scaling analysis indicated that the Paleogene zircons were mainly derived from recycled sediments of the Songpan-Ganzi terrane and the Sichuan Basin, with minor input from the Yidun terrane, Kangdian terrane, Qinling orogenic belt, and Jiangnan-Xuefeng orogenic belt. More specifically, the sediment supply from the Songpan-Ganzi terrane to the foreland basin decreased significantly from the Mingshan stage to the Lushan stage, and the Sichuan Basin simultaneously became the most important source area. In addition, there is a high correlation between the detrital zircon U-Pb age spectrum of the southwestern Sichuan Basin and that of the Xichang Basin, which may suggest that a wider and unified Paleo-Yangtze Basin existed during the Late Cretaceous-early Paleogene.


2021 ◽  
Vol 22 (2) ◽  
pp. 1-9 ◽  
Author(s):  
Martín Cárdenas Soto ◽  
José Piña Flores ◽  
David Escobedo Zenil ◽  
Jesús Sánchez González ◽  
José Antonio Martínez González

To explore the usefulness of the ambient seismic noise tomography method for characterizing the subsoil surface structure, in this study, we apply this method to contribute to geotechnical decision-making in the construction of a school building. We used a rectangular array (36x56 m) of 48-4.5 Hz vertical geophones and produce surface wave tomographies from the travel times of Rayleigh waves extracted by cross-correlation of seismic noise. We determined a final 3D Vs model using 1D models derived from the inversion of dispersion curves obtained from the tomography maps for different frequencies. The 3D model shows an excellent resolution (vertical and lateral); we observe critical velocity contrasts in the range of 2 to 15 m deep. At depths higher than 15 m, the velocity has values close to 900 m/s; however, we observe a low-velocity anomaly associated with a lava tube or crack that seems to continue under an adjacent building.


2020 ◽  
Author(s):  
Agnes Wansing ◽  
Jörg Ebbing ◽  
Eva Bredow

<p>We present an integrated geophysical-petrological model of the Eifel region. The Eifel is a volcanic active region in West Germany that exhibits Tertiary as well as Quaternary volcanism. One suggestion for the source of this volcanism is a small-scale upper mantle plume.</p><p>The 3D model includes the crust and upper mantle and was generated by combined modelling of topography and the gravity field with constraints from seismology and geochemistry. In the best-fit model, the subcontinental lithospheric mantle is associated with a Phanerozoic-type composition, resulting in a depth of 80 km for the lithosphere-asthenosphere boundary (LAB) beneath the Eifel and in comparison 110 - 130 km beneath the Paris basin. A Proterozoic-type composition in contrast results in a LAB depth of 120 km in the Eifel. While the model fits the geophysical observables and features a thin lithosphere, it does not lead to a plume-like structure and does not feature a seismic low-velocity anomaly.</p><p>The measured low-velocity anomaly can be reproduced by introducing (1) an even thinner lithosphere or (2) a plume-like body above the thermal LAB with a composition based on data from Eifel xenoliths, which have a mainly basanitic composition. This additional structure results in a thermal anomaly and has an effect on the isostatic elevation of c. 360 m, but it does not result in a significant signal in the gravity anomalies. Further modelling showed how crustal intrusions could additionally mask the gravitational effect from such a small-scale upper mantle plume.</p><p>The model does not conclusively explain the source of the Eifel volcanism, but the models and the calculation of synthetic dispersion curves help to assess the possibility to resolve a small-scale upper mantle plume with joint inversion in future analysis.</p>


Geology ◽  
2020 ◽  
Author(s):  
Zhongmin Tao ◽  
Aibing Li ◽  
Karen M. Fischer

The presence of localized low-velocity anomalies in the upper mantle beneath the passive Atlantic margin in North America is a puzzling geophysical observation. Whether the anomalies are caused by the remnant heat from past hotspots or ongoing asthenospheric upwelling is still debated. We addressed the formation of the anomalies based on a recent velocity model for eastern North America, which reveals new information on their shapes and anisotropic signatures. The low-velocity anomaly in New England appears as a narrow column above 90 km depth and broadens westward at depths of 120–200 km. Two slow anomalies are imaged under the central Appalachian Mountains between 140 km and 240 km. These low velocities correspond to pronounced positive radial anisotropy (Vsh > Vsv), indicating a dominantly horizontal asthenospheric flow. They also coincide with the tracks of the Great Meteor hotspot (140–115 Ma) and an inferred hidden hotspot (60–50 Ma). The anomalies in the central Appalachians could be due to lithospheric interaction with the second hotspot and subsequent lithospheric instabilities. The complex shape of the New England anomaly is consistent with interaction with both hotspots. The first hotspot could have eroded the base of the lithosphere, forming a channel, and the second hotspot could have further thinned the lithosphere and produced a localized cavity at shallow depths. Consequently, the indented lithosphere base would have filled with channelized asthenospheric flow or produced small-scale convection, helping to sustain the slow anomaly. Low-velocity anomalies at the North America passive margin are likely the consequences of prior hotspot interactions.


2021 ◽  
Author(s):  
Zhikai Wang ◽  
Satish Singh ◽  
Cecile Prigent ◽  
Emma Gregory ◽  
Milena Marjanovic

Abstract Transform plate boundaries, one of the key elements of plate tectonics, accommodate lateral motions and produce large earthquakes, but their nature at depth remains enigmatic. Using ultra-long offset seismic data, here we report the presence of a low-velocity anomaly extending down to ~60 km depth beneath the Romanche transform fault in the equatorial Atlantic Ocean. Our result indicates the presence of deep penetration of water leading to extensive serpentinization down to 16 km, followed by a shear mylonite zone down to 32 km over a low-temperature water induced-melting zone, elevating the lithosphere-asthenosphere boundary and hence thinning the lithosphere significantly beneath the transform fault. The presence of a thinned lithosphere and the melt underneath could lead to volcanism, migration and mixing of the water-induced melt with the high-temperature melt beneath the ridge axis, and small-scale convections beneath transform boundaries. Hence, a thinned lithosphere will have a major impact on the dynamics of ridge-transform system, and will influence the evolution of fracture zones and oceanic lithosphere.


Sign in / Sign up

Export Citation Format

Share Document