Integrated geophysical-petrological modelling of the Eifel region

Author(s):  
Agnes Wansing ◽  
Jörg Ebbing ◽  
Eva Bredow

<p>We present an integrated geophysical-petrological model of the Eifel region. The Eifel is a volcanic active region in West Germany that exhibits Tertiary as well as Quaternary volcanism. One suggestion for the source of this volcanism is a small-scale upper mantle plume.</p><p>The 3D model includes the crust and upper mantle and was generated by combined modelling of topography and the gravity field with constraints from seismology and geochemistry. In the best-fit model, the subcontinental lithospheric mantle is associated with a Phanerozoic-type composition, resulting in a depth of 80 km for the lithosphere-asthenosphere boundary (LAB) beneath the Eifel and in comparison 110 - 130 km beneath the Paris basin. A Proterozoic-type composition in contrast results in a LAB depth of 120 km in the Eifel. While the model fits the geophysical observables and features a thin lithosphere, it does not lead to a plume-like structure and does not feature a seismic low-velocity anomaly.</p><p>The measured low-velocity anomaly can be reproduced by introducing (1) an even thinner lithosphere or (2) a plume-like body above the thermal LAB with a composition based on data from Eifel xenoliths, which have a mainly basanitic composition. This additional structure results in a thermal anomaly and has an effect on the isostatic elevation of c. 360 m, but it does not result in a significant signal in the gravity anomalies. Further modelling showed how crustal intrusions could additionally mask the gravitational effect from such a small-scale upper mantle plume.</p><p>The model does not conclusively explain the source of the Eifel volcanism, but the models and the calculation of synthetic dispersion curves help to assess the possibility to resolve a small-scale upper mantle plume with joint inversion in future analysis.</p>

2020 ◽  
Vol 224 (2) ◽  
pp. 1326-1343
Author(s):  
Hengchu Peng ◽  
José Badal ◽  
Jiafu Hu ◽  
Haiyan Yang ◽  
Benyu Liu

SUMMARY Tengchong volcanic field (TVF) in the northern Indochina block lies in a critical area for understanding complex regional dynamics associated with continent–continent convergence between the Indian and Eurasian plates, including northeastward compression generated by subduction of the Indian Plate beneath the Burma Arc, and southeastward lateral extrusion of the crust from below central Tibet. We gathered 3408 pairs of P receiver functions with different frequencies and calculated the splitting parameters of the Moho-converted Pms phase. An anisotropic H-κ stacking algorithm was used to determine crustal thickness and Vp/Vs ratios. We also inverted for the detailed S-velocity structure of the crust and upper mantle using a two-step inversion technique. Finally, we mapped the topography of the lithosphere–asthenosphere boundary. Results show fast-wave polarization directions with a dominant NE–SW orientation and delay times varying between 0.19 and 1.22 s, with a mean of 0.48 ± 0.07 s. The crustal Vp/Vs ratio varies from 1.68 to 1.90 and shows a maximum value below the central part of the TVF, where there is relatively thin crust (∼35–39 km) and a pronounced low-velocity anomaly in the middle–lower crust. The depth of the lithosphere–asthenosphere boundary ranges from 53 to 85 km: it is relatively deep (∼70–85 km) in the vicinity of the TVF and relatively shallow in the south of the study area. In the absence of low shear wave velocity in the upper mantle below the TVF, we propose that the low-velocity anomaly in the lower crust beneath the TVF derives from the upper mantle below the neighbouring Baoshan block.


2021 ◽  
Author(s):  
Hui Dou ◽  
Sergei Lebedev ◽  
Bruna Chagas de Melo ◽  
Baoshan Wang ◽  
Weitao Wang

<p>We present a new shear-wave velocity model of the upper mantle beneath the East Asia, ASIA2021, derived using the Automatic Multimode Inversion technique. We use waveform fits of over 1.3 million seismograms, comprising waveforms of surface waves, S and multiple S waves.  In total, data from 9351 stations and 23344 events constrain ASIA2021, which maps in detail the structure of the lithosphere and underlying mantle beneath the region. Our model reveals deep structure beneath the tectonic units that make up East Asia. It shows agreement with previous models at larger scales and, also, sharper and stronger velocity anomalies at smaller regional scales. High-velocity continent roots are mapped in detail beneath the Sichuan Basin, Tarim Basin, Ordos Block, and Siberian Craton, extending to over 200 km depths. The lack of a high-velocity continental root beneath the Eastern North China Craton (ENCC), underlain, instead, by a low-velocity anomaly, is consistent with the destruction of this Archean nucleus. Strong low-velocity anomalies are mapped within the top 100 km beneath Tibet, Pamir, Altay-Sayan area, and back-arc basins. At greater depths, ASIA2021 shows high-velocity anomalies related to the subducted and underthrusted lithosphere of India beneath Tibet and the subduction of the Pacific and other plates in the upper mantle. In the mantle transition zone (MTZ), we find high-velocity anomalies probably related to deflected subducted slabs or detached portions of ancient continent cratons. In particularly, ASIA2021 reveals separate bodies, probably originating from the Indian Plate lithosphere beneath central Tibet, with one at 100-200 km beneath Songpan-Ganzi Block (SGFB) and the other in the MTZ. A strong low-velocity anomaly extending from the surface to the lower mantle beneath Hainan volcano and South China Sea is consistent with the hypothesis of the Hainan mantle plume. The high-velocity anomaly beneath ENCC in MTZ can be interpreted as a detached Archean continent root. The Pacific Plate subducts beneath the eastern margin of Asia into the MTZ and appears to deflect and extend horizontally as far west as the Songliao Basin. The absence of major gaps in the stagnant slab is consistent with the origin of Changbaishan volcano above being related to the Big Mantle Wedge, proposed previously. The low-velocity anomalies down to ~ 700 km depth beneath the Lake Baikal area suggest a hot upwelling (mantle plume) feeding the widely distributed Cenozoic volcanoes in central and western Mongolia.</p>


1971 ◽  
Vol 61 (5) ◽  
pp. 1441-1451
Author(s):  
R. D. Adams

abstract Early reflections of the phase P′P′ recorded at North American seismograph stations from nuclear explosions in Novaya Zemlya are used to examine the crust and upper mantle beneath a region of eastern Antarctica. Many reflections are observed from depths less than 120 km, indicating considerable inhomogeneity at these depths in the Earth. No regular horizons were found throughout the area, but some correlation was observed among reflections at closely-spaced stations, and, at many stations, reflections were observed from depths of between 60 and 80 km, corresponding to a likely upper boundary of the low-velocity channel. Deeper reflections were found at depths of near 420 and 650 km. The latter boundary was particularly well-observed and appears to be sharply defined at a depth that is constant to within a few kilometers. The boundary at 420 km is not so well defined by reflections of P′P′, but reflects well longer-period PP waves, arriving at wider angles of incidence. This boundary appears to be at least as pronounced, but not so sharp as that near 650 km. The deep structure beneath Antarctica presents no obvious difference from that beneath other continental areas.


2010 ◽  
Vol 47 (5) ◽  
pp. 621-632 ◽  
Author(s):  
R. D. Hyndman

The crust and upper mantle thermal regime of the Canadian Cordillera and its tectonic consequences were an important part of the Cordillera Lithoprobe program and related studies. This article provides a review, first of the thermal constraints, and then of consequences in high surface elevation and current tectonics. Cordillera and adjacent craton temperatures are well constrained by geothermal heat flow, mantle tomography velocities, upper mantle xenoliths, and the effective elastic thickness, Te. Cordillera temperatures are very high and laterally uniform, explained by small scale convection beneath a thin lithosphere, 800–900 °C at the Moho, contrasted to 400–500 °C for the craton. The high temperatures provide an explanation for why the Cordillera has high elevation in spite of a generally thin crust, ∼33 km, in contrast to low elevation and thicker crust, 40–45 km, for the craton. The Cordillera is supported ∼1600 m by lithosphere thermal expansion. In the Cordillera only the upper crust has significant strength; Te ∼ 15 km, in contrast to over 60 km for the craton. The Cordillera is tectonically active because the lithosphere is sufficiently weak to be deformed by plate boundary and gravitational forces; the craton is too strong. The Canadian Cordillera results have led to new understandings of processes in backarcs globally. High backarc temperatures and weak lithospheres explain the tectonic activity over long geological times of mobile belts that make up about 20% of continents. They also have led to a new understanding of collision orogenic heat in terms of incorporation of already hot backarcs.


2020 ◽  
Vol 221 (1) ◽  
pp. 178-204 ◽  
Author(s):  
N L Celli ◽  
S Lebedev ◽  
A J Schaeffer ◽  
M Ravenna ◽  
C Gaina

SUMMARY We present a tomographic model of the crust, upper mantle and transition zone beneath the South Atlantic, South America and Africa. Taking advantage of the recent growth in broadband data sampling, we compute the model using waveform fits of over 1.2 million vertical-component seismograms, obtained with the automated multimode inversion of surface, S and multiple S waves. Each waveform provides a set of linear equations constraining perturbations with respect to a 3-D reference model within an approximate sensitivity volume. We then combine all equations into a large linear system and solve it for a 3-D model of S- and P-wave speeds and azimuthal anisotropy within the crust, upper mantle and uppermost lower mantle. In South America and Africa, our new model SA2019 reveals detailed structure of the lithosphere, with structure of the cratons within the continents much more complex than seen previously. In South America, lower seismic velocities underneath the transbrasilian lineament (TBL) separate the high-velocity anomalies beneath the Amazon Craton from those beneath the São Francisco and Paraná Cratons. We image the buried portions of the Amazon Craton, the thick cratonic lithosphere of the Paraná and Parnaíba Basins and an apparently cratonic block wedged between western Guyana and the slab to the west of it, unexposed at the surface. Thick cratonic lithosphere is absent under the Archean crust of the São Luis, Luis Álves and Rio de La Plata Cratons, next to the continental margin. The Guyana Highlands are underlain by low velocities, indicating hot asthenosphere. In the transition zone, we map the subduction of the Nazca Plate and the Chile Rise under Patagonia. Cratonic lithosphere beneath Africa is more fragmented than seen previously, with separate cratonic units observed within the West African and Congo Cratons, and with cratonic lithosphere absent beneath large portions of Archean crust. We image the lateral extent of the Niassa Craton, hypothesized previously and identify a new unit, the Cubango Craton, near the southeast boundary of the grater Congo Craton, with both of these smaller cratons unexposed at the surface. In the South Atlantic, the model reveals the patterns of interaction between the Mid-Atlantic Ridge (MAR) and the nearby hotspots. Low-velocity anomalies beneath major hotspots extend substantially deeper than those beneath the MAR. The Vema Hotspot, in particular, displays a pronounced low-velocity anomaly under the thick, high-velocity lithosphere of the Cape Basin. A strong low velocity anomaly also underlies the Cameroon Volcanic Line and its offshore extension, between Africa and the MAR. Subtracting the global, age-dependent VS averages from those in the South Atlantic Basins, we observe areas where the cooling lithosphere is locally hotter than average, corresponding to the location of the Tristan da Cunha, Vema and Trindade hotspots. Beneath the anomalously deep Argentine Basin, we image unusually thick, high-velocity lithosphere, which suggests that its anomalously great depth can be explained, at least to a large extent, by isostatic, negative lithospheric buoyancy.


2020 ◽  
Author(s):  
Yan Cai ◽  
Jianping Wu

<p>North China Craton is the oldest craton in the world. It contains the eastern, central and western part. Shanxi rift and Taihang mountain contribute the central part. With strong tectonic deformation and intense seismic activity, its crust-mantle deformation and deep structure have always been highly concerned. In recent years, China Earthquake Administration has deployed a dense temporary seismic array in North China. With the permanent and temporary stations, we obtained the crust-mantle S-wave velocity structure in the central North China Craton by using the joint inversion of receiver function and surface wave dispersion. The results show that the crustal thickness is thick in the north of the Shanxi rift (42km) and thin in the south (35km). Datong basin, located in the north of the rift, exhibits large-scale low-velocity anomalies in the middle-lower crust and upper mantle; the Taiyuan basin and Linfen basin, located in the central part, have high velocities in the lower crust and upper mantle; the Yuncheng basin, in the southern part, has low velocities in the lower crust and upper mantle velocities, but has a high-velocity layer below 80 km. We speculate that an upwelling channel beneath the west of the Datong basin caused the low velocity anomalies there. In the central part of the Shanxi rift, magmatic bottom intrusion occurred before the tension rifting, so that the heated lithosphere has enough time to cool down to form high velocity. Its current lithosphere with high temperature may indicate the future deformation and damage. There may be a hot lithospheric uplift in the south of the Shanxi rift, heating the crust and the lithospheric mantle. The high-velocity layer in its upper mantle suggests that the bottom of the lithosphere after the intrusion of the magma began to cool down.</p>


1977 ◽  
Vol 67 (3) ◽  
pp. 693-711 ◽  
Author(s):  
Charles A. Langston ◽  
David E. Blum

abstract Simultaneous modeling of source parameters and local layered earth structure for the April 29, 1965, Puget Sound earthquake was done using both ray and layer matrix formulations for point dislocations imbedded in layered media. The source parameters obtained are: dip 70° to the east, strike 344°, rake −75°, 63 km depth, average moment of 1.4 ± 0.6 × 1026 dyne-cm, and a triangular time function with a rise time of 0.5 sec and falloff of 2.5 sec. An upper mantle and crustal model for southern Puget Sound was determined from inferred reflections from interfaces above the source. The main features of the model include a distinct 15-km-thick low-velocity zone with a 2.5-km/sec P-wave-velocity contrast lower boundary situated at approximately 56-km depth. Ray calculations which allow for sources in dipping structure indicate that the inferred high contrast value can trade off significantly with interface dip provided the structure dips eastward. The effective crustal model is less than 15 km thick with a substantial sediment section near the surface. A stacking technique using the instantaneous amplitude of the analytic signal is developed for interpreting short-period teleseismic observations. The inferred reflection from the base of the low-velocity zone is recovered from short-period P and S waves. An apparent attenuation is also observed for pP from comparisons between the short- and long-period data sets. This correlates with the local surface structure of Puget Sound and yields an effective Q of approximately 65 for the crust and upper mantle.


2020 ◽  
Vol 196 ◽  
pp. 02021
Author(s):  
Eugenia Lyskova ◽  
Konstantin Sannikov

The anisotropy of seismic waves in the continental regions still belongs to the category of controversial issues, since its estimates in different areas show a different sign of the anisotropy coefficient. In contrast to studies of oceanic regions, where SH velocities always prevail over SV velocities, in the continental regions the relations between the velocities are very different. The explanation for this, first of all, is the difference in structure. The structure of the crust and upper mantle under the oceans is much more homogeneous in comparison with the structure of the continental regions. There are several approaches to the estimation of anisotropy. The most traditional method is to use the maximum amount of data separately for Love and Rayleigh waves to study the lateral distributions of SH- and SV-wave velocity, despite the fact that the density of the coverage by paths, and, consequently, the regions of best resolution can be of different shapes and sizes. It was decided to use this method as the first approximation in creating an anisotropic portrait of the Carpathian region. The Carpathian region was chosen as the object of study, since it contains interesting contrasting features: (1) the Pannonian Basin, which is characterized by a thin crust, a thinned lithosphere, and anomalously high values of the heat flux; (2) the Tornquist-Teisseyre zone, which is parallel to the strike of the Eastern Carpathians, and represents the contact zone of the Precambrian lithosphere of the EEP and the relatively young lithosphere of Western Europe. (3) The third feature is the Vrancea zone, one of the most active seismic zones in Europe. It is located in the junction of young tectonic structures: the Southern and Eastern Carpathians, the Transylvanian Depression and the Pre-Carpathian Depression. The results of the study confirm that the Tornquist-Teisseyre Zone divides the structures of the ancient East European Platform and orogenic zones of Western Europe: the upper mantle throughout EEP is characterized by high velocities, whereas velocities throughout WE are markedly lower. Low velocity anomalies prevail under Pannonian Basin which is characterized by anomalously high heat flow values. The distribution of the anisotropy coefficient demonstrates an extended layer of low values of the anisotropy coefficient at depths of 150-200 km. Above this layer, velocity distributions reveal the block structure of the lithosphere. The earthquake sources in the Vrancea zone fall into the transition zone from the highvelocity mantle under the EEP to the low-velocity mantle under the WE. Earthquakes do not occur below the revealed asthenospheric layer.


Sign in / Sign up

Export Citation Format

Share Document