scholarly journals A procedure for source studies from spectrums of long-period seismic body waves

1965 ◽  
Vol 55 (2) ◽  
pp. 203-235 ◽  
Author(s):  
Ari Ben-Menahem ◽  
Stewart W. Smith ◽  
Ta-Liang Teng

Abstract The well-known first motion method of Nakano and Byerly is extended, generalized and combined with recent new ideas in body wave theory in order to set up a routine procedure for extracting source parameters from spectral analysis of isolated P and S pulses recorded at a net of standardized stations around a non-shallow source. The method consists of compensating the observed spectrums for instrumental and propagational effects. A combined study of the resulting radiation patterns, initial phases, and the initial amplitudes will render information regarding the spatial and temporal nature of deep and intermediate earthquake sources as seen through the spectral window of 10-100 seconds. The shorter periods can be used for source studies only if an accurate station correction is available.

1981 ◽  
Vol 71 (1) ◽  
pp. 25-35
Author(s):  
Ragnar Slunga

abstract A method for earthquake source studies based on a combined use of polarity and amplitude observations is proposed. It makes use of the impulses of the observed body waves to avoid the introduction of additional source parameters besides the orientation angles and seismic moments. A statistical model is proposed and the method is applied to five small earthquakes in Sweden recorded by 3 to 5 stations in the distance range of 20 to 100 km. The seismic moments of these earthquakes are in the range of 0.6 to 10 × 1011 N-m (1 N-m = 107 dyne-cm). The resulting mechanisms are statistically significant and well defined in spite of the fact that for four of the earthquakes, only two or less polarities are used. Furthermore, the solutions are close to the mechanism of the major (Mo = 3.5 × 1015 N-m) earthquake in the Gulf of Finland 1976. They all indicate horizontal principal compressive stresses in the sector E-W to SSE-NNW. The successful use of amplitude observations presented in this paper shows that source mechanism inversion can be made based on recordings at only a very few close stations.


Solid Earth ◽  
2012 ◽  
Vol 3 (2) ◽  
pp. 339-354 ◽  
Author(s):  
S. C. Stähler ◽  
K. Sigloch ◽  
T. Nissen-Meyer

Abstract. Triplicated body waves sample the mantle transition zone more extensively than any other wave type, and interact strongly with the discontinuities at 410 km and 660 km. Since the seismograms bear a strong imprint of these geodynamically interesting features, it is highly desirable to invert them for structure of the transition zone. This has rarely been attempted, due to a mismatch between the complex and band-limited data and the (ray-theoretical) modelling methods. Here we present a data processing and modelling strategy to harness such broadband seismograms for finite-frequency tomography. We include triplicated P-waves (epicentral distance range between 14 and 30°) across their entire broadband frequency range, for both deep and shallow sources. We show that is it possible to predict the complex sequence of arrivals in these seismograms, but only after a careful effort to estimate source time functions and other source parameters from data, variables that strongly influence the waveforms. Modelled and observed waveforms then yield decent cross-correlation fits, from which we measure finite-frequency traveltime anomalies. We discuss two such data sets, for North America and Europe, and conclude that their signal quality and azimuthal coverage should be adequate for tomographic inversion. In order to compute sensitivity kernels at the pertinent high body wave frequencies, we use fully numerical forward modelling of the seismic wavefield through a spherically symmetric Earth.


The seismic moment and source area of an earthquake can be determined by fitting theoretical displacement amplitude spectra to observed ones. From these basic parameters the dislocation at the source and the stress-drop can be estimated. This method was tested in the case of four earthquakes for which the source parameters were known from observed surface ruptures. The uncertainty in the moment and area determinations was found to be approximately a factor of 2; for the displacement and stress-drop it was approximately a factor of 3 and 5 respectively. The application of spectral analysis of body waves to earthquakes in the deep seismic zone of Tonga-Kermadec indicate that stress-drop as well as apparent stress increase with depth and decrease again at great depth. This observation is interpreted as reflecting increasing material strength in the deep seismic zone near 450 km, with a reduction of strength at still greater depths. It is proposed that the temperature distribution in the downgoing slab of lithosphere causes this pattern.


1978 ◽  
Vol 68 (5) ◽  
pp. 1281-1292
Author(s):  
John E. Ebel ◽  
L. J. Burdick ◽  
Gordon S. Stewart

abstract The El Golfo earthquake of August 7, 1966 (mb = 6.3, MS = 6.3) occurred near the mouth of the Colorado River at the northern end of the Gulf of California. Synthetic seismograms for this event were computed for both the body waves and the surface waves to determine the source parameters of the earthquake. The body-wave model indicated the source was a right lateral, strike-slip source with a depth of 10 km and a far-field time function 4 sec in duration. The body-wave moment was computed to be 5.0 × 1025 dyne-cm. The surface-wave radiation pattern was found to be consistent with that of the body waves with a surface-wave moment of 6.5 × 1025 dyne-cm. The agreement of the two different moments indicates that the earthquake had a simple source about 4 sec long. A comparison of this earthquake source with the Borrego Mountain and Truckee events demonstrates that all three of these earthquakes behaved as high stress-drop events. El Golfo was shown to be different from the low stress-drop, plate-boundary events which were located on the Gibbs fracture zone in 1967 and 1974.


2012 ◽  
Vol 4 (2) ◽  
pp. 783-821 ◽  
Author(s):  
S. C. Stähler ◽  
K. Sigloch ◽  
T. Nissen-Meyer

Abstract. Triplicated body waves sample the mantle transition zone more extensively than any other wave type, and interact strongly with the discontinuities at 410 km and 660 km. Since the seismograms bear a strong imprint of these geodynamically interesting features, it is highly desirable to invert them for structure of the transition zone. This has rarely been attemped, due to the mismatch between the complex and bandlimited data and the (ray-theoretical) modeling methods. Here we present a data processing and modeling strategy to harness such broadband seismograms for finite-frequency tomography. We include triplicated P-waves (epicentral distance range between 14 and 30°) across their entire broadband frequency range, for both deep and shallow sources. We show that it is possible to predict the complex sequence of arrivals in these seismograms, but only after a careful effort to estimate source time functions and other source parameters from data, variables that strongly influence the waveforms. Modeled and observed waveforms then yield decent cross-correlation fits, from which we measure finite-frequency traveltime anomalies. We discuss two such data sets, for North America and Europe, and conclude that their signal quality and azimuthal coverage should be adequate for tomographic inversion. In order to compute sensitivity kernels at the pertinent high body-wave frequencies, we use fully numerical forward modelling of the seismic wavefield through a spherically symmetric earth.


2021 ◽  
Author(s):  
Felix Bissig ◽  
Amir Khan ◽  
Domenico Giardini

<p>The mantle transition zone (MTZ) is bounded by seismic discontinuities at average depths of 410 km and 660 km, which are generally associated with major mantle mineral transformations. A body wave impinging from above on these discontinuities develops a refracted and reflected branch, leading to multiple arrivals of the same wavetype within a short time window. These so-called triplicated body waves are observed at regional epicentral distances (15-30°) and carry information on MTZ structure due to their strong interaction with the 410 km and 660 km discontinuities. Careful data selection and processing as well as the assessment of source parameters are necessary steps in obtaining a high quality triplication data set. In this study, we consider recordings of events in Central America at permanent and transportable USArray stations, which are inverted for mantle structure. Our methodology is based on a joint consideration of mineral physics and seismic data in a probabilistic inversion framework and allows for determination of mantle thermo-chemical and seismic velocity structure. We present constraints on the mantle structure underneath the Gulf of Mexico.</p>


2020 ◽  
Vol 222 (3) ◽  
pp. 1639-1655
Author(s):  
Xin Zhang ◽  
Corinna Roy ◽  
Andrew Curtis ◽  
Andy Nowacki ◽  
Brian Baptie

SUMMARY Seismic body wave traveltime tomography and surface wave dispersion tomography have been used widely to characterize earthquakes and to study the subsurface structure of the Earth. Since these types of problem are often significantly non-linear and have non-unique solutions, Markov chain Monte Carlo methods have been used to find probabilistic solutions. Body and surface wave data are usually inverted separately to produce independent velocity models. However, body wave tomography is generally sensitive to structure around the subvolume in which earthquakes occur and produces limited resolution in the shallower Earth, whereas surface wave tomography is often sensitive to shallower structure. To better estimate subsurface properties, we therefore jointly invert for the seismic velocity structure and earthquake locations using body and surface wave data simultaneously. We apply the new joint inversion method to a mining site in the United Kingdom at which induced seismicity occurred and was recorded on a small local network of stations, and where ambient noise recordings are available from the same stations. The ambient noise is processed to obtain inter-receiver surface wave dispersion measurements which are inverted jointly with body wave arrival times from local earthquakes. The results show that by using both types of data, the earthquake source parameters and the velocity structure can be better constrained than in independent inversions. To further understand and interpret the results, we conduct synthetic tests to compare the results from body wave inversion and joint inversion. The results show that trade-offs between source parameters and velocities appear to bias results if only body wave data are used, but this issue is largely resolved by using the joint inversion method. Thus the use of ambient seismic noise and our fully non-linear inversion provides a valuable, improved method to image the subsurface velocity and seismicity.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hijrah Saputra ◽  
Wahyudi Wahyudi ◽  
Iman Suardi ◽  
Ade Anggraini ◽  
Wiwit Suryanto

AbstractThis study comprehensively investigates the source mechanisms associated with the mainshock and aftershocks of the Mw = 6.3 Yogyakarta earthquake which occurred on May 27, 2006. The process involved using moment tensor inversion to determine the fault plane parameters and joint inversion which were further applied to understand the spatial and temporal slip distributions during the earthquake. Moreover, coseismal slip distribution was overlaid with the relocated aftershock distribution to determine the stress field variations around the tectonic area. Meanwhile, the moment tensor inversion made use of near-field data and its Green’s function was calculated using the extended reflectivity method while the joint inversion used near-field and teleseismic body wave data which were computed using the Kikuchi and Kanamori methods. These data were filtered through a trial-and-error method using a bandpass filter with frequency pairs and velocity models from several previous studies. Furthermore, the Akaike Bayesian Information Criterion (ABIC) method was applied to obtain more stable inversion results and different fault types were discovered. Strike–slip and dip-normal were recorded for the mainshock and similar types were recorded for the 8th aftershock while the 9th and 16th June were strike slips. However, the fault slip distribution from the joint inversion showed two asperities. The maximum slip was 0.78 m with the first asperity observed at 10 km south/north of the mainshock hypocenter. The source parameters discovered include total seismic moment M0 = 0.4311E + 19 (Nm) or Mw = 6.4 with a depth of 12 km and a duration of 28 s. The slip distribution overlaid with the aftershock distribution showed the tendency of the aftershock to occur around the asperities zone while a normal oblique focus mechanism was found using the joint inversion.


2012 ◽  
Vol 518-523 ◽  
pp. 4273-4277
Author(s):  
Huang Jinbai ◽  
Wang Bin ◽  
Hinokidani Osamu ◽  
Kajikawa Yuki

In order to achieve the accurate calculation of “rainfall-runoff” process combined with snowmelt and to provide a useful numerical method for estimating surface water resources in a basin, a runoff numerical calculation model of “rainfall-runoff” process combined with snowmelt was developed for a distributive hydrological model. Numerical method on “Rainfall-runoff” process was set up by applying kinematic wave theory, and calculations on snowmelt were made using energy budget method. Validity of the model was verified through numerical simulation of the observed surface flow. Results of the error analysis indicated that a large error existed between the numerical results and the observed ones without considering snowmelt whereas the error was at the permissible range of criterion (< 3 %) by considering snowmelt. The results showed that the snowmelt calculation should be considered at snow melt area when performing the runoff calculation.


2021 ◽  
Author(s):  
Itzhak Lior ◽  
Anthony Sladen ◽  
Diego Mercerat ◽  
Jean-Paul Ampuero ◽  
Diane Rivet ◽  
...  

&lt;p&gt;The use of Distributed Acoustic Sensing (DAS) presents unique advantages for earthquake monitoring compared with standard seismic networks: spatially dense measurements adapted for harsh environments and designed for remote operation. However, the ability to determine earthquake source parameters using DAS is yet to be fully established. In particular, resolving the magnitude and stress drop, is a fundamental objective for seismic monitoring and earthquake early warning. To apply existing methods for source parameter estimation to DAS signals, they must first be converted from strain to ground motions. This conversion can be achieved using the waves&amp;#8217; apparent phase velocity, which varies for different seismic phases ranging from fast body-waves to slow surface- and scattered-waves. To facilitate this conversion and improve its reliability, an algorithm for slowness determination is presented, based on the local slant-stack transform. This approach yields a unique slowness value at each time instance of a DAS time-series. The ability to convert strain-rate signals to ground accelerations is validated using simulated data and applied to several earthquakes recorded by dark fibers of three ocean-bottom telecommunication cables in the Mediterranean Sea. The conversion emphasizes fast body-waves compared to slow scattered-waves and ambient noise, and is robust even in the presence of correlated noise and varying wave propagation directions. Good agreement is found between source parameters determined using converted DAS waveforms and on-land seismometers for both P- and S-wave records. The demonstrated ability to resolve source parameters using P-waves on horizontal ocean-bottom fibers is key for the implementation of DAS based earthquake early warning, which will significantly improve hazard mitigation capabilities for offshore and tsunami earthquakes.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document