Inversion of teleseismic body waves for the moment tensor of the 1978 Thessaloniki, Greece, earthquake

1981 ◽  
Vol 71 (5) ◽  
pp. 1423-1444
Author(s):  
Jeffrey S. Barker ◽  
Charles A. Langston

abstract Seismograms from WWSSN and Canadian network stations were modeled to determine the source parameters of the 20 June 1978 Thessaloniki, Greece, earthquake (Ms = 6.4). The depth of the initial rupture was constrained to 11 ± 1 km by comparison of the arrival times of surface reflections with synthetic short-period seismograms. A focal sphere plot of first motion polarities provided little constraint on other focal parameters, except to indicate that predominantly normal faulting was involved. A generalized inverse technique utilizing the moment tensor formalism was applied to teleseismic P and SH waves for six increments of depth. The moment tensor obtained indicated a nearly horizontal, N-trending tension axis and a nearly vertical compression axis, and yielded the following double-couple source parameters: strike 280° ± 7°; dip 55° ± 3°; rake −65° ± 5°; seismic moment 5.7 × 1025 dyne-cm; and a skewed triangular source time function with a rise time of about 1 sec and duration of 6 to 8 sec. Due to indications of multiple or finite source effects for this event, and the assumption in the moment tensor formalism of a point source, a low-pass filter was applied to the data and the inversions were repeated. The results were nearly identical with those of the original inversion, suggesting that any individual sources had similar mechanisms, or that the point source model is sufficient for this earthquake.

1987 ◽  
Vol 77 (5) ◽  
pp. 1558-1578
Author(s):  
Kristín S. Vogfjörd ◽  
Charles A. Langston

Abstract Average source parameters of the 1968 Meckering, Australia earthquake are obtained by the inversion of body waves. The objectives of the inversion are the elements of the moment tensor and the source-time history. An optimum source depth of 3 km is determined, but because of source complexity the point source assumption fails and the moment tensor obtained at that depth has a large nondouble-couple term, compensated linear vector dipole = 34 per cent. The source parameters of the major double-couple are: strike = 341°; dip = 37°; rake = 61°; and seismic moment = 8.2 ×1025 dyne-cm. The source-time function is of approximately 4 sec duration, with a long rise time and a sharp fall-off. The fault length is constrained on the surface by the observed surface break, and results from vertical displacement modeling suggest a width of approximately 10 km in the middle, assuming a dip of 37°. That restricts the entire faulted area to lie above 6 km depth. Two finite fault models for the earthquake are presented, with rupture initiating at a point (1) near the top of the fault and (2) at the bottom of the fault. Both models produce similar long-period synthetics, but based on the short-period waveforms, model 1 is favored. It is argued that such a rupture process is the most reasonable in this cold shield region.


1982 ◽  
Vol 72 (2) ◽  
pp. 439-456
Author(s):  
Thorne Lay ◽  
Jeffrey W. Given ◽  
Hiroo Kanamori

Abstract The seismic moment and source orientation of the 8 November 1980 Eureka, California, earthquake (Ms = 7.2) are determined using long-period surface and body wave data obtained from the SRO, ASRO, and IDA networks. The favorable azimuthal distribution of the recording stations allows a well-constrained mechanism to be determined by a simultaneous moment tensor inversion of the Love and Rayleigh wave observations. The shallow depth of the event precludes determination of the full moment tensor, but constraining Mzx = Mzy = 0 and using a point source at 16-km depth gives a major double couple for period T = 256 sec with scalar moment M0 = 1.1 · 1027 dyne-cm and a left-lateral vertical strike-slip orientation trending N48.2°E. The choice of fault planes is made on the basis of the aftershock distribution. This solution is insensitive to the depth of the point source for depths less than 33 km. Using the moment tensor solution as a starting model, the Rayleigh and Love wave amplitude data alone are inverted in order to fine-tune the solution. This results in a slightly larger scalar moment of 1.28 · 1027 dyne-cm, but insignificant (<5°) changes in strike and dip. The rake is not well enough resolved to indicate significant variation from the pure strike-slip solution. Additional amplitude inversions of the surface waves at periods ranging from 75 to 512 sec yield a moment estimate of 1.3 ± 0.2 · 1027 dyne-cm, and a similar strike-slip fault orientation. The long-period P and SH waves recorded at SRO and ASRO stations are utilized to determine the seismic moment for 15- to 30-sec periods. A deconvolution algorithm developed by Kikuchi and Kanamori (1982) is used to determine the time function for the first 180 sec of the P and SH signals. The SH data are more stable and indicate a complex bilateral rupture with at least four subevents. The dominant first subevent has a moment of 6.4 · 1026 dyne-cm. Summing the moment of this and the next three subevents, all of which occur in the first 80 sec of rupture, yields a moment of 1.3 · 1027 dyne-cm. Thus, when the multiple source character of the body waves is taken into account, the seismic moment for the Eureka event throughout the period range 15 to 500 sec is 1.3 ± 0.2 · 1027 dyne-cm.


1981 ◽  
Vol 71 (2) ◽  
pp. 491-505
Author(s):  
Katsuhiko Ishida

abstract The methodology to estimate the strong motion Fourier amplitude spectra in a short-period range (T ≦ 1 to 2 sec) on a bedrock level is discussed in this paper. The basic idea is that the synthetic strong motion Fourier spectrum F˜A(ω) calculated from smoothed rupture velocity model (Savage, 1972) is approximately similar to that of low-pass-filtered strong earthquake ground motion at a site in a period range T ≧ 1 to 2 sec: F˜A(ω)=B˜(ω)·A(ω). B˜(ω) is an observed Fourier spectrum on a bedrock level and A(ω) is a low-pass filter. As a low-pass filter, the following relation, A ( T ) = · a · T n a T n + 1 , ( T = 2 π / ω ) , is assumed. In order to estimate the characteristic coefficients {n} and {a}, the Tokachi-Oki earthquake (1968), the Parkfield earthquake (1966), and the Matsushiro earthquake swarm (1966) were analyzed. The results obtained indicate that: (1) the coefficient {n} is nearly two for three earthquakes, and {a} is nearly one for the Tokachi-Oki earthquake, eight for the Parkfield earthquake, and four for the Matsushiro earthquake swarm, respectively; (2) the coefficient {a} is related with stress drop Δσ as (a = 0.07.Δσ). Using this relationship between {a} and Δσ, the coefficients {a} of past large earthquakes were estimated. The Fourier amplitude spectra on a bedrock level are also estimated using an inverse filtering method of A ( T ) = a T 2 a T 2 + 1 .


1983 ◽  
Vol 73 (2) ◽  
pp. 419-434
Author(s):  
Jeffery S. Barker ◽  
Charles A. Langston

abstract Teleseismic P-wave first motions for the M ≧ 6 earthquakes near Mammoth Lakes, California, are inconsistent with the vertical strike-slip mechanisms determined from local and regional P-wave first motions. Combining these data sets allows three possible mechanisms: a north-striking, east-dipping strike-slip fault; a NE-striking oblique fault; and a NNW-striking normal fault. Inversion of long-period teleseismic P and SH waves for the events of 25 May 1980 (1633 UTC) and 27 May 1980 (1450 UTC) yields moment tensors with large non-double-couple components. The moment tensor for the first event may be decomposed into a major double couple with strike = 18°, dip = 61°, and rake = −15°, and a minor double couple with strike = 303°, dip = 43°, and rake = 224°. A similar decomposition for the last event yields strike = 25°, dip = 65°, rake = −6°, and strike = 312°, dip = 37°, and rake = 232°. Although the inversions were performed on only a few teleseismic body waves, the radiation patterns of the moment tensors are consistent with most of the P-wave first motion polarities at local, regional, and teleseismic distances. The stress axes inferred from the moment tensors are consistent with N65°E extension determined by geodetic measurements by Savage et al. (1981). Seismic moments computed from the moment tensors are 1.87 × 1025 dyne-cm for the 25 May 1980 (1633 UTC) event and 1.03 × 1025 dyne-cm for the 27 May 1980 (1450 UTC) event. The non-double-couple aspect of the moment tensors and the inability to obtain a convergent solution for the 25 May 1980 (1944 UTC) event may indicate that the assumptions of a point source and plane-layered structure implicit in the moment tensor inversion are not entirely valid for the Mammoth Lakes earthquakes.


1989 ◽  
Vol 60 (2) ◽  
pp. 37-57 ◽  
Author(s):  
M. L. Jost ◽  
R. B. Herrmann

Abstract A review of a moment tensor for describing a general seismic point source is presented to show a second order moment tensor can be related to simpler seismic source descriptions such as centers of expansion and double couples. A review of literature is followed by detailed algebraic expansions of the moment tensor into isotropic and deviatoric components. Specific numerical examples are provided in the appendices for use in testing algorithms for moment tensor decomposition.


2021 ◽  
Vol 13 (5) ◽  
pp. 1957-1985
Author(s):  
Domenico Di Giacomo ◽  
James Harris ◽  
Dmitry A. Storchak

Abstract. Seismologists and geoscientists often need earthquake catalogues for various types of research. This input usually contains basic earthquake parameters such as location (longitude, latitude, depth, and origin time), as well as magnitude information. For the latter, the moment magnitude Mw has become the most sought after magnitude scale in the seismological community to characterize the size of an earthquake. In this contribution we provide an informative account of the Mw content for the newly rebuilt Bulletin of the International Seismological Centre (ISC, http://www.isc.ac.uk, last access: May 2021), which is regarded as the most comprehensive record of the Earth's seismicity. From this data, we extracted a list of hypocentres with Mw from a multitude of agencies reporting data to the ISC. We first summarize the main temporal and spatial features of the Mw provided by global (i.e. providing results for moderate to great earthquakes worldwide) and regional agencies (i.e. also providing results for small earthquakes in a specific area). Following this, we discuss their comparisons, by considering not only Mw but also the surface wave magnitude MS and short-period body wave magnitude mb. By using the Global Centroid Moment Tensor solutions as an authoritative global agency, we identify regional agencies that best complement it and show examples of frequency–magnitude distributions in different areas obtained both from the Global Centroid Moment Tensor alone and complemented by Mw from regional agencies. The work done by the regional agencies in terms of Mw is fundamental to improve our understanding of the seismicity of an area, and we call for the implementation of procedures to compute Mw in a systematic way in areas currently not well covered in this respect, such as vast parts of continental Asia and Africa. In addition, more studies are needed to clarify the causes of the apparent overestimation of global Mw estimations compared to regional Mw. Such difference is also observed in the comparisons of Mw with MS and mb. The results presented here are obtained from the dataset (Di Giacomo and Harris, 2020, https://doi.org/10.31905/J2W2M64S) stored at the ISC Dataset Repository (http://www.isc.ac.uk/dataset_repository/, last access: May 2021).


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4595 ◽  
Author(s):  
Longjun Dong ◽  
Yihan Zhang ◽  
Ju Ma

To explore the potential precursors of rock instability, it is necessary to clarify the mechanism of micro-crack from fracturing to failure, which involves the evolution of fracture size, orientation, source model, and their relationships to the loading. The waveforms of acoustic emission (AE) recorded by the sensor network attached rock sample during laboratory tests provide a data basis for solving these problems, since these observations are directly related to the characteristics of the fracturing sources. Firstly, we investigated the source mechanism, looking at the rise angle and the average frequency (RA-AF) trends during five loading stages in a uniaxial compression test. Results show that the proportion of shear events significantly increases when approaching instability. Secondly, we calculated the moment tensor for each event, considering the uncertainties of P-wave polarity, azimuth, and the takeoff angles of the rays. Moment tensor solutions suggest that there are obviously more crack events than shear events in all loading stages. Moment tensor evolutions confirmed that the decreasing of isotropic component and the increment of double-couple can be used as precursors of rock fracturing development. Considering the limitations of these two methods, it is suggested that we should be concerned more about the proportions of individual failure components and their evolutions over time, instead of absolutely classifying the events into a certain source type.


2021 ◽  
Author(s):  
José Ángel López-Comino ◽  
Thomas Braun ◽  
Torsten Dahm ◽  
Simone Cesca ◽  
Stefania Danesi

<p>On October 27<sup>th</sup>, 2017, a M<sub>w</sub> 4 earthquake occurred close to the municipality of Montesano sulla Marcellana, less than 10 km external to the concession of the largest European on-shore hydrocarbon reservoir - the Val d’Agri oilfield (Southern Italy). Being a weak event located outside the extended monitoring domain of the industrial concession, the relevance of this earthquake and possible links with the hydrocarbon exploitation were not deepened. The study of weak to moderate earthquakes can improve the characterization of the potentially destructive seismic hazard of this particular area, already struck by M>6.5 episodes in the past. Taking advantage of a wide coverage of seismic stations deployed in the VA region, we analyze the source parameters of this M<sub>w</sub> 4 earthquake applying advanced seismological techniques to estimate the uncertainties derived from the moment tensor inversion and identify plausible directivity effects. The moment tensor is dominated by a NW-SE oriented normal faulting with a centroid depth of 14 km. A single M<sub>L</sub> 2.1 aftershock was recorded and used as empirical Green function to calculate the apparent source time function for the mainshock. Apparent durations (in the range 0.11 - 0.21 s, obtained from S-waves) define an azimuthal pattern which reveals an asymmetric bilateral rupture with the 70% of the rupture propagation in the N310°W direction, suggesting a rupture plane dipping to the SW. Our results conclude that the Montesano earthquake activated a deeper fault segment associated to the Eastern Agri Fault System close to the basement. The relative low trigger potential below 10% based on depletion-induced stress changes discards an induced or triggered event due to the long-term hydrocarbon extraction in the Val d’Agri oilfield, and it rather suggests a natural cause due to the local tectonic stress.</p>


Author(s):  
Lindsay M. Linzer ◽  
Mark W. Hildyard ◽  
Johan Wesseloo

This paper presents a numerical investigation on the influence of the mining environment on seismic sources, with a focus on pillar failure mechanisms in tabular mining. We investigate the influence of the mining stope (underground excavation or void) on seismic inversions for the scalar moment, corner frequency, source radius, stress drop and moment tensor using synthetic events created within elastodynamic numerical modelling software, WAVE3D. The main objective is to determine whether the source parameters calculated from the recorded waveforms are due to a combination of the stope source and the pillar sources, rather than being related only to crushing of the pillar or shearing in the pillar footwall. The main finding is that the presence of stopes, and types of pillars, have a significant impact on the seismic moment and other source parameters. This is important since the moment is viewed as a robust parameter on which seismic magnitude is often based; however, this study indicates that moments calculated for pillar failure in a tabular stoping environments are less representative of the shearing or crushing source than originally thought. This article is part of the theme issue ‘Fracture dynamics of solid materials: from particles to the globe’.


2015 ◽  
Vol 743 ◽  
pp. 233-238 ◽  
Author(s):  
Qi Yuan Zhu ◽  
Xiang Li Meng

Microstrip filter has extensive application in microwave circuit and communication system in the future. We take lumped components low-pass filter as the prototype and employ the Richards transformation and the Kuroda rule to change the low pass prototype into a bandstop filter. By using ADS (Advanced Design System) method we design a microstrip stub bandstop filter, whose center frequency, range of frequency and relative width are respectively 4GHz, 3GHz ~ 5GHz and 8%. And then we further optimize the parameters to get the circuit design layout. It is shown that all indexes reach the design requirements and the method possesses the features such as short period and high reliability.


Sign in / Sign up

Export Citation Format

Share Document