In vitro and ex vivo substrate stiffness effects on endothelial monolayer permeability in response to TNF-[alpha]

2021 ◽  
Author(s):  
Christina Maria Furia
2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A915-A915
Author(s):  
Phuong Nguyen ◽  
Ryan Phennicie ◽  
Kevin Kauffman ◽  
Dominika Nowakowska ◽  
Mohammad Zafari ◽  
...  

BackgroundMacrophages play an important role in cancer by modulating both the innate and adaptive parts of the immune system. In non-pathological conditions, multiple subsets of macrophages balance the immune response. In cancer, M2-like immune-suppressive tumor-associated macrophages (TAMs) dominate the tumor microenvironment (TME). TAMs promote tumor growth, support neo-angiogenesis and enable metastasis formation. Macrophage modulators driving macrophage repolarization from the M2-like to a pro-inflammatory M1-like phenotype are an attractive novel class of cancer immunotherapy. Here we present identification, validation, and pre-clinical data of a novel macrophage checkpoint, PSGL-1, which supports targeting this molecule for immune-oncology.MethodsTo assess the therapeutic potential of using anti-PSGL-1 antibodies to convert macrophage phenotype and the tumor microenvironment toward a more inflammatory state, we employed in vitro primary macrophage and multi-cellular assays, ex vivo patient-derived tumor cultures, and a humanized mouse PDX model.ResultsWithin the multiple subsets of macrophages, PSGL-1 is expressed at high levels on immune-suppressive TAMs and in vitro differentiated M2 macrophages. We show that targeting PSGL-1 via an antagonistic antibody repolarized M2 macrophages to a more M1-like state, both phenotypically and functionally as assessed in primary in vitro macrophage assays. Further, these repolarized M1-like macrophages enhanced the inflammatory response in complex multi-cellular assays, including SEB stimulated PBMC assays and mixed-lymphocyte reactions (MLRs).To establish a pre-clinical proof-of-concept for targeting PSGL-1, we turned to ex vivo cultures of fresh patient-derived primary tumors, where the complexity of the TME can be most preserved. RNA-seq data show that ex vivo cultures treated with anti-PD-1 antibody recapitulate TME changes in anti-PD-1 treated patients, including a strong T-cell IFN-gamma signature and a reduction in oncogenic pathway activation. Blocking PSGL-1 resulted in a robust pro-inflammatory signature driven by TNF-alpha/NF-kappa-B and chemokine-mediated signaling. The increase in TNF-alpha signaling was accompanied by reduction in oxidative phosphorylation and fatty acid metabolism. The increase in pro-inflammatory cytokine and chemokine production was confirmed by measuring secreted protein levels, further confirming the re-polarization of macrophages within a tumor setting.Lastly, we employed a humanized mouse PDX model of melanoma and show that anti-PSGL-1 treatment resulted in suppression of tumor growth favorably compared to anti-PD-1. At the cellular and molecular levels, anti-PSGL-1 treatment lead to a more enhanced inflammatory microenvironment, including a reduced M2:M1 macrophage ratio, increased antigen presentation, pro-inflammatory mediators, and effector T cell infiltration and activation.ConclusionsOur data support anti-PSGL-1 as a macrophage repolarizing agent and an effective macrophage-targeted therapy for Immuno-Oncology.


Blood ◽  
1992 ◽  
Vol 79 (3) ◽  
pp. 745-753 ◽  
Author(s):  
A Khwaja ◽  
JE Carver ◽  
DC Linch

Abstract Exposure of neutrophils to a range of cytokines augments their response to subsequent agonist-induced activation of the respiratory burst. We have examined the effects of several of these factors, both singly and in combination, on the priming of f-met-leu-phe (FMLP) and complement C5a-stimulated neutrophil H2O2 production, using a whole blood flow cytometric assay designed to minimize artefactual activation. Both granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor alpha (TNF alpha) produced a similar degree of priming of the FMLP-stimulated burst in vitro (558% +/- 86%, n = 41, and 581% +/- 95%, n = 21, of the response seen with FMLP alone, respectively), but with markedly different kinetics (half-maximal response 20 minutes and 7 minutes, respectively). Preincubation with granulocyte colony- stimulating factor (G-CSF) alone caused only modest priming (202% +/- 39%, n = 14). Priming with cytokine combinations of the FMLP-stimulated burst showed that the combinations of G-CSF and TNF alpha and GM-CSF and TNF alpha are highly synergistic, with recruitment of neutrophils unresponsive to priming by single agents. Priming with the combination of GM-CSF and G-CSF was not significantly different to priming with GM- CSF alone. Similar results were obtained using C5a as the respiratory burst stimulus. Significant priming of the FMLP-stimulated respiratory burst was seen in vivo in patients receiving an infusion of GM-CSF (332% +/- 50% of preinfusion response to FMLP, P less than .005, n = 8). Priming was also seen in patients receiving G-CSF (152% +/- 58%, n = 5), although this did not reach conventional significance levels (.05 less than P less than .1). Although GM-CSF infusion caused priming in vivo, this was 48% less than predicted by preinfusion in vitro responses. This result was not due to inadequate GM-CSF levels as addition of further GM-CSF ex vivo did not correct the response. However, these neutrophils were still able to respond appropriately to ex vivo priming with TNF alpha, with a doubling in H2O2 production.


2020 ◽  
Vol 75 (4) ◽  
pp. 399-407
Author(s):  
Aaron Strumwasser ◽  
Caitlin M. Cohan ◽  
Genna Beattie ◽  
Vincent Chong ◽  
Gregory P. Victorino

BACKGROUND: Autotaxin (ATX-secretory lysophospholipase D) is the primary lysophosphatidic acid (LPA) producing enzyme. LPA promotes endothelial hyper-permeability and microvascular dysfunction following cellular stress. OBJECTIVE: We sought to assess whether ATX inhibition would attenuate endothelial monolayer permeability after anoxia-reoxygenation (A-R) in vitro and attenuate the increase in hydraulic permeability observed after ischemia-reperfusion injury (IRI) in vivo. METHODS: A permeability assay assessed bovine endothelial monolayer permeability during anoxia-reoxygenation with/without administration of pipedimic acid, a specific inhibitor of ATX, administered either pre-anoxia or post-anoxia. Hydraulic permeability (Lp) of rat mesenteric post-capillary venules was evaluated after IRI, with and without ATX inhibition. Lastly, Lp was evaluated after the administration of ATX alone. RESULTS: Anoxia-reoxygenation increased monolayer permeability 4-fold (p < 0.01). Monolayer permeability was reduced to baseline similarly in both the pre-anoxia and post-anoxia ATX inhibition groups (each p < 0.01, respectively). Lp was attenuated by 24% with ATX inhibition (p < 0.01). ATX increased Lp from baseline in a dose dependent manner (p < 0.05). CONCLUSIONS: Autotaxin inhibition attenuated increases in endothelial monolayer permeability during A-R in vitro and hydraulic permeability during IRI in vivo. Targeting ATX may be especially beneficial by limiting its downstream mediators that contribute to mechanisms associated with endothelial permeability. ATX inhibitors may therefore have potential for pharmacotherapy during IRI.


1993 ◽  
Vol 265 (2) ◽  
pp. L148-L157 ◽  
Author(s):  
E. M. Wheatley ◽  
P. J. McKeown-Longo ◽  
P. A. Vincent ◽  
T. M. Saba

Plasma fibronectin, a dimeric adhesive protein in blood, incorporates into the subendothelial and interstitial matrix in the lung especially during vascular injury. Fibronectin in the matrix is believed to influence cell-cell interaction and endothelial cell adhesion to the collagen-rich extracellular matrix. We previously observed that addition of purified soluble human plasma fibronectin (hFn) to cultured pulmonary endothelial monolayers attenuates the increase in protein permeability of such monolayers exposed to tumor necrosis factor-alpha (TNF-alpha). In the current study, we determined the specificity of this permeability response to fibronectin by comparing hFn to two other purified adhesive proteins in human plasma, i.e., vitronectin (Vn) and fibrinogen (Fg). We also determined whether matrix incorporation was essential for this hFn-mediated protective response by comparing normal intact hFn to either hFn alkylated with N-ethylmaleimide (NEM) or to purified 160/180-kDa hFn fragments, since these alternate forms of fibronectin are believed to exhibit limited ability to incorporate into matrix. Calf pulmonary artery endothelial (CPAE) monolayers (3-4 days postseeding) were exposed to human recombinant TNF-alpha for 18 h at a medium concentration of 200 U/ml followed by assessment of protein permeability using transendothelial 125I-labeled albumin clearance. Dimeric hFn (600 micrograms/ml) significantly (P < 0.05) reduced the TNF-induced increase in endothelial monolayer permeability. Vn or Fg, added at equal molar concentrations to the hFn, were unable to attenuate endothelial permeability. Immunofluorescent analysis utilizing antibodies specific to either hFn, human Vn, or human Fg revealed incorporation of the exogenous hFn into the extracellular matrix, but no matrix incorporation of Vn or Fg. Both NEM-treated dimeric hFn as well as purified 160/180-kDa fragments of hFn, which cannot incorporate into the matrix, were also unable to prevent the TNF-induced increase in protein permeability. Thus the ability for soluble hFn to reduce the TNF-induced increase in lung endothelial monolayer permeability was specific and dependent on its incorporation into the extracellular matrix.


Blood ◽  
1992 ◽  
Vol 79 (3) ◽  
pp. 745-753 ◽  
Author(s):  
A Khwaja ◽  
JE Carver ◽  
DC Linch

Exposure of neutrophils to a range of cytokines augments their response to subsequent agonist-induced activation of the respiratory burst. We have examined the effects of several of these factors, both singly and in combination, on the priming of f-met-leu-phe (FMLP) and complement C5a-stimulated neutrophil H2O2 production, using a whole blood flow cytometric assay designed to minimize artefactual activation. Both granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor alpha (TNF alpha) produced a similar degree of priming of the FMLP-stimulated burst in vitro (558% +/- 86%, n = 41, and 581% +/- 95%, n = 21, of the response seen with FMLP alone, respectively), but with markedly different kinetics (half-maximal response 20 minutes and 7 minutes, respectively). Preincubation with granulocyte colony- stimulating factor (G-CSF) alone caused only modest priming (202% +/- 39%, n = 14). Priming with cytokine combinations of the FMLP-stimulated burst showed that the combinations of G-CSF and TNF alpha and GM-CSF and TNF alpha are highly synergistic, with recruitment of neutrophils unresponsive to priming by single agents. Priming with the combination of GM-CSF and G-CSF was not significantly different to priming with GM- CSF alone. Similar results were obtained using C5a as the respiratory burst stimulus. Significant priming of the FMLP-stimulated respiratory burst was seen in vivo in patients receiving an infusion of GM-CSF (332% +/- 50% of preinfusion response to FMLP, P less than .005, n = 8). Priming was also seen in patients receiving G-CSF (152% +/- 58%, n = 5), although this did not reach conventional significance levels (.05 less than P less than .1). Although GM-CSF infusion caused priming in vivo, this was 48% less than predicted by preinfusion in vitro responses. This result was not due to inadequate GM-CSF levels as addition of further GM-CSF ex vivo did not correct the response. However, these neutrophils were still able to respond appropriately to ex vivo priming with TNF alpha, with a doubling in H2O2 production.


2002 ◽  
Vol 80 (7) ◽  
pp. 700-709 ◽  
Author(s):  
M Drouet ◽  
F Mourcin ◽  
N Grenier ◽  
J F Mayol ◽  
V Leroux ◽  
...  

Bone marrow aplasia observed following ionizing radiation exposure (Total Body Irradiation; gamma dose range: 2–10 Gy) is a result, in particular, of the radiation-induced (RI) apoptosis in hematopoietic stem and progenitor cells (HSPC). We have previously shown in a baboon model of mobilized peripheral blood CD34+ cell irradiation in vitro that RI apoptosis in HSPC was an early event, mostly occurring within the first 24 hours, which involves the CD95 Fas pathway. Apoptosis may be significantly reduced with a combination of 4 cytokines (4F): Stem Cell Factor (SCF), FLT-3 Ligand (FL), thrombopoietin (TPO), and interleukin-3 (IL-3), each at 50 ng·mL–1 (15% survival versus <3% untreated cells, 24 h post-irradiation at 2.5 Gy). In this study we show that addition of TNF-alpha(800 IU/ml) induces an increase in 4F efficacy in terms of cell survival 24 h after incubation (26% survival after 24 h irradiation exposure at 2.5 Gy) and amplification (k) of CD34+ cells after 6 days in a serum free culture medium (SFM) (kCD34+ = 4.3 and 6.3 respectively for 4F and successive 4F + TNF-alpha/ 4F treatments). In addition, the 4F combination allows culture on pre-established allogenic irradiated stromal cells in vitro at 4 Gy (kCD34+ = 4.5). Overall this study suggests (i) the potential therapeutic interest for an early administration of anti-apoptotic cytokines with or without hematopoiesis inhibitors (emergency cytokine therapy) and (ii) the feasibility in the accidentally irradiated individual, of autologous cell therapy based on ex vivo expansion in order to perform autograft of residual HSPC collected after the accident.Key words: apoptosis, cytokine, hematopoiesis, irradiation, bone marrow aplasia.[Journal translation]


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2231-2231
Author(s):  
Kathrin Sebelin ◽  
Antje Meier ◽  
Carola Beier ◽  
Bernd Dörken ◽  
Antonio Pezzutto ◽  
...  

Abstract Immunosuppressive drugs used in patients (pts) after stem cell / organ transplantation (Tx) as well as in pts with autoimmune disease are known to impair the cellular immune response. This results in an increased incidence of viral infections and viral associated malignancies which has been ascribed to the effect of immunosuppressive drugs on lymphocytes. However, in vitro data indicate that immunosuppressive drugs also target Dendritic Cells (DCs), the most potent antigen-presenting cells and initiators of lymphocyte responses. So far, most studies are based on in vitro data obtained with DC culture in the presence of different concentrations of single immunosuppressive drugs. To investigate the effect of immunosuppression on DC phenotype and function in vivo, we quantitatively and qualitatively analyzed freshly isolated human BDCA-1(CD1c) positive DCs from 15 solid organ transplant (SOT) recipients under immunosuppressive treatment. The percentage of BDCA-1 positive cells among total PBMCs was not statistically different in pts vs ctrls (0,52 vs 0,65, p<0,18). BDCA-1 positive DCs were analyzed for expression of HLA class I and II, CD14, costimmulatory molecules and chemokine expression. Interestingly, CD14 was found to be significantly higher expressed on pt-DCs vs ctrl-DCs suggesting a more immature DC-phenotype. We observed a trend toward a reduced expression of HLA-DR and CD86 on pts-DCs as compared to ctrls-DCs (p=0,059). Surface profile of BDCA-1 positive DCs was also analyzed after 48h of LPS and CD40L stimulation. Here we found a marked upregulation of HLA-DR and CD86 in pts- DCs as well as ctrl-DCs. Supernatant of stimulated DCs was analyzed with cytokine capture beads for secretion of inflammatory cytokines. High secretion of IL-6, IL-1 beta and partially of TNF-alpha by stimulated DCs was observed in both groups. Other Th2 type cytokines (IL-10, IL-4, IL-5) and Th1 type cytokines like IFN-gamma and Il-2 were not significantly secreted. We additionally addressed the question if mature and functionally competent DCs could be generated ex vivo from this pts cohort. After 9 days of culture with GM-CSF, IL-4, IL-1, IL-6, TNF-alpha and PGE2 fully mature DCs could be generated. Co-culture of EBV-peptide-pulsed DCs with autologous T-cells resulted in significant expansion of EBV-specific T cells in pts and ctrls. These T cells were fully functional as shown by IFN-γ secretion detected by ELISPOT. In summary, this is the first analysis of freshly isolated BDCA-1 positive DCs from immunosuppressed pts. Our data support the notion that immunosuppressive drugs target DCs and contribute to a maturation defect of circulating blood DCs which may help to understand the mechanism of impaired cellular immune responses in immunosuppressed pts. However, ex vivo generated DCs from immunosuppressed pts do not show an impairment in phenotype and function, suggesting that they could be efficiently be used in immunotherapeutic strategies.


VASA ◽  
2005 ◽  
Vol 34 (1) ◽  
pp. 11-17 ◽  
Author(s):  
Brunner-La Rocca ◽  
Schindler ◽  
Schlumpf ◽  
Saller ◽  
Suter

Background: Previous studies showed an anti-atherosclerotic effect of PADMA 28, an herbal formula based on Tibetan medicine. As the mechanisms of action are not fully understood, we investigated whether PADMA 28 may lower blood lipids and lipid oxidisability, and affect early endothelial dysfunction. Patients and methods: Sixty otherwise healthy subjects with total cholesterol ≥5.2 mmol/l and < 8.0 mmol/l were randomly assigned to placebo or PADMA 28, 3 x 2 capsules daily, for 4 weeks (double-blind). Blood lipids (total, LDL-, and HDL-cholesterol, triglycerides, Apo-lipoprotein A1 and B) and ex vivo lipid oxidisability were measured before and after treatment. In a subset of 24 subjects, endothelial function was assessed using venous occlusion plethysmography with intraarterial infusion of acetylcholine. Isolated LDL and plasma both untreated and pre-treated with PADMA 28 extract were oxidised by the radical generator AAPH. Conjugated diene formation was measured at 245 nm. Results: Blood lipids did not change during the study in both groups. In contrast to previous reports in mild hypercholesterolaemia, no endothelial dysfunction was seen and, consequently, was not influenced by therapy. Ex vivo blood lipid oxidisability was significantly reduced with PADMA 28 (area under curve: 5.29 ± 1.62 to 4.99 ± 1.46, p = 0.01), and remained unchanged in the placebo group (5.33 ± 1.88 to 5.18 ± 1.78, p > 0.1). This effect persisted one week after cessation of medication. In vitro experiments confirmed the prevention of lipid peroxidation in the presence of PADMA 28 extracts. Persistent protection was also seen for LDL isolated from PADMA 28-pretreated blood after being subjected to rigorous purification. Conclusions: This study suggests that the inhibition of blood lipid oxidisability by PADMA 28 may play a role in its anti-atherosclerotic effect.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Sign in / Sign up

Export Citation Format

Share Document