Cystic Fibrosis Gene Therapy – Not Low-hanging Fruit

2016 ◽  
Vol 02 (02) ◽  
pp. 48 ◽  
Author(s):  
Uta Griesenbach ◽  
Eric WFW Alton ◽  
◽  

The last 25 years have shown that it has been comparatively slow and difficult to develop cystic fibrosis (CF) gene therapy; the lung is a complex target organ. However, research has steadily progressed and recently it was shown that non-viral gene therapy can stabilise CF lung disease. These data, in addition to the development of potent lentiviral vectors, have renewed interest in CF gene therapy within academia and industry.

2005 ◽  
Vol 387 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Tim W. R. LEE ◽  
David A. MATTHEWS ◽  
G. Eric BLAIR

Gene therapy holds promise for the treatment of a range of inherited diseases, such as cystic fibrosis. However, efficient delivery and expression of the therapeutic transgene at levels sufficient to result in phenotypic correction of cystic fibrosis pulmonary disease has proved elusive. There are many reasons for this lack of progress, both macroscopically in terms of airway defence mechanisms and at the molecular level with regard to effective cDNA delivery. This review of approaches to cystic fibrosis gene therapy covers these areas in detail and highlights recent progress in the field. For gene therapy to be effective in patients with cystic fibrosis, the cDNA encoding the cystic fibrosis transmembrane conductance regulator protein must be delivered effectively to the nucleus of the epithelial cells lining the bronchial tree within the lungs. Expression of the transgene must be maintained at adequate levels for the lifetime of the patient, either by repeat dosage of the vector or by targeting airway stem cells. Clinical trials of gene therapy for cystic fibrosis have demonstrated proof of principle, but gene expression has been limited to 30 days at best. Results suggest that viral vectors such as adenovirus and adeno-associated virus are unsuited to repeat dosing, as the immune response reduces the effectiveness of each subsequent dose. Nonviral approaches, such as cationic liposomes, appear more suited to repeat dosing, but have been less effective. Current work regarding non-viral gene delivery is now focused on understanding the mechanisms involved in cell entry, endosomal escape and nuclear import of the transgene. There is now increasing evidence to suggest that additional ligands that facilitate endosomal escape or contain a nuclear localization signal may enhance liposome-mediated gene delivery. Much progress in this area has been informed by advances in our understanding of the mechanisms by which viruses deliver their genomes to the nuclei of host cells.


Viruses ◽  
2010 ◽  
Vol 2 (2) ◽  
pp. 395-412 ◽  
Author(s):  
Stefano Castellani ◽  
Massimo Conese

Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 771
Author(s):  
Julen Rodríguez-Castejón ◽  
Ana Alarcia-Lacalle ◽  
Itziar Gómez-Aguado ◽  
Mónica Vicente-Pascual ◽  
María Ángeles Solinís Aspiazu ◽  
...  

Fabry disease (FD) is a monogenic X-linked lysosomal storage disorder caused by a deficiency in the lysosomal enzyme α-Galactosidase A (α-Gal A). It is a good candidate to be treated with gene therapy, in which moderately low levels of enzyme activity should be sufficient for clinical efficacy. In the present work we have evaluated the efficacy of a non-viral vector based on solid lipid nanoparticles (SLN) to increase α-Gal A activity in an FD mouse model after intravenous administration. The SLN-based vector incremented α-Gal A activity to about 10%, 15%, 20% and 14% of the levels of the wild-type in liver, spleen, heart and kidney, respectively. In addition, the SLN-based vector significantly increased α-Gal A activity with respect to the naked pDNA used as a control in plasma, heart and kidney. The administration of a dose per week for three weeks was more effective than a single-dose administration. Administration of the SLN-based vector did not increase liver transaminases, indicative of a lack of toxicity. Additional studies are necessary to optimize the efficacy of the system; however, these results reinforce the potential of lipid-based nanocarriers to treat FD by gene therapy.


Author(s):  
Hyung‐Ok Lee ◽  
Christiana O. Salami ◽  
Dolan Sondhi ◽  
Stephen M. Kaminsky ◽  
Ronald G. Crystal ◽  
...  

2010 ◽  
Vol 18 (8) ◽  
pp. 1422-1429 ◽  
Author(s):  
Dmitry M Shayakhmetov ◽  
Nelson C Di Paolo ◽  
Karen L Mossman

RSC Advances ◽  
2018 ◽  
Vol 8 (22) ◽  
pp. 12104-12115 ◽  
Author(s):  
Ke Men ◽  
Rui Zhang ◽  
Xueyan Zhang ◽  
Rong Huang ◽  
Guonian Zhu ◽  
...  

Liposome–protamine complex delivered VSVMP mRNA efficiently inhibits C26 colon carcinoma with safety, providing an alternative strategy for non-viral gene therapy.


Sign in / Sign up

Export Citation Format

Share Document