scholarly journals Soil phosphorus fractionation in calcareous soil as affected by organic amendments application

2020 ◽  
Vol 53 (1) ◽  
pp. 149
Author(s):  
Adel Ghoneim, et al.

<p>Understanding of P transformations following organic amendments addition to highly calcareous soils is necessary for developing better management practices that can help enhance P fertilizer use efficiency. Phosphorus solubility and availability for plant uptake under the conditions of arid calcareous soil is very low, making P nutrient supply a critical issue under these conditions. The aim of this study was to evaluate the impact of various types of organic amendments (chicken compost, cow compost and a mixture of humic-fulvic acid) applied alone at different rates of KH2PO4 fertilizer on P fractions in calcareous soil using the sequential chemical extraction method. Amended calcareous soil was incubated under laboratory conditions and soil samples were collected at 0, 4, 8 and 16 weeks of the incubation periods. Soil was sequentially extracted and analyzed for P different fractions. The results indicated that the addition of chicken and cow compost increased soluble and exchangeable-P and Ca-P fractions in calcareous soil and the increases depend on application rates. The results indicated that combination of chicken and cow compost with different KH2PO4 fertilizer application rates increased the concentration of soluble and exchangeable-P in the soil compared to organic amendments or KH2PO4 fertilizer applied alone. The P associated with Ca was the dominant P fractions in soil, ranging between 51 to 59% regardless of the different treatment and the period of incubations. The Al- and Fe-associated P fractions varied between 2 and 9%, with the maximum value being observed at the eighth week of incubation. The residual-P fraction ranged between 5 and 22% at different incubation periods.</p>

2016 ◽  
Vol 96 (2) ◽  
pp. 191-198 ◽  
Author(s):  
M.A. Ribey ◽  
I.P. O’Halloran

Environmental indices for soil P limit P applications when soil tests and risk of P losses exceed a given threshold. Producers’ reluctance to reduce P inputs often stem from concerns regarding reduced crop production and soil fertility. Our objectives were to identify changes in soil P fractions after 4 yr of repeated manure or fertilizer P applications at rates ≤ crop removal by corn (Zea mays L.), and the impact of these applications on yields. Olsen P and soil P fractions extracted using a modified Hedley P fractionation procedure were measured. Corn yields were nonresponsive to P applications. After 4 yr, Olsen P was 16.6 and 24.6 mg kg−1 at the application rates of 0 and 33 kg P ha−1 yr−1, respectively, for the inorganic fertilizer treatment indicating that soil P drawdown was occurring. Only the most labile forms of Pi (resin and bicarbonate extractable) were affected by treatment, with greater values at higher P application rates. Adherence to Ontario’s P index recommendations for P applications at or below crop removal should not be a crop production concern. Furthermore, given the rate of soil labile P drawdown, routine soil testing (every 3–5 yr) would identify agronomically significant changes in soil test P before the crop yield is impacted.


Author(s):  
Syezlin Hasan ◽  
James C. R. Smart ◽  
Rachel Hay ◽  
Sharyn Rundle-Thiele

Research focused on understanding wider systemic factors driving behavioral change is limited with a dominant focus on the role of individual farmer and psychosocial factors for farming practice change, including reducing fertilizer application in agriculture. Adopting a wider systems perspective, the current study examines change and the role that supporting services have on fertilizer application rate change. A total of 238 sugarcane growers completed surveys reporting on changes in fertilizer application along with factors that may explain behavior change. Logistic regressions and negative binomial count-data regressions were used to examine whether farmers had changed fertilizer application rates and if they had, how long ago they made the change, and to explore the impact of individual and system factors in influencing change. Approximately one in three sugarcane growers surveyed (37%) had changed the method they used to calculate fertilizer application rates for the cane land they owned/managed at some point. Logistic regression results indicated growers were less likely to change the basis for their fertilizer calculation if they regarded maintaining good relationships with other local growers as being extremely important, they had another source of off-farm income, and if they had not attended a government-funded fertilizer management workshop in the five years preceding the survey. Similar drivers promoted early adoption of fertilizer practice change; namely, regarding family traditions and heritage as being unimportant, having sole decision-making authority on farming activities and having attended up to 5 workshops in the five years prior to completing the survey. Results demonstrated the influence of government-funded services to support practice change.


2012 ◽  
Vol 66 (12) ◽  
pp. 2688-2694 ◽  
Author(s):  
Dongsu Bi ◽  
Xiaopin Guo ◽  
Zhihong Cai ◽  
Xiufang Gao ◽  
Yan Li ◽  
...  

The phosphorus (P) distribution in the sediments of Haizi Lake from the middle reach of the Yangtze River region, China, was investigated using a sequential chemical extraction procedure. P forms and concentrations of sediment samples taken at 25 sites over the whole lake were measured. The relationships between various forms of P in sediments and dissolved P in the overlying water were also discussed. Results showed that the concentrations of total P (TP) in the sediments ranged from 404 to 670 mg kg−1, with an average of 503 mg kg−1. The exchangeable P (Ex-P), Al-bound P (Al-P), Fe-bound P (Fe-P), occluded P (Oc-P), authigenic carbonate fluorapatite + biogenic apatite + CaCO3-associated P (ACa-P), detrital apatite + other inorganic P (De-P) and organic P (Or-P) accounted for, on average, 0.52, 0.04, 10.9, 32.0, 7.4, 20.1 and 29.0% of TP, respectively. Relevance analysis indicated that Oc-P, ACa-P and De-P, as the majority forms of inorganic P, were less correlated to others. The significant correlations between Ex-P, Al-P, Fe-P, Or-P and TP suggested the probability of reciprocal transformation. It was suggested that Ex-P, Al-P, Fe-P, Or-P and TP in the sediments might be released easily to the water interface, resulting in sustained lake eutrophication.


2014 ◽  
Vol 21 (3) ◽  
pp. 465-475 ◽  
Author(s):  
Jolanta Latosińska ◽  
Jarosław Gawdzik

Abstract Sewage sludge ashes from grate furnace and fluidized bed furnace were used in this research. This research was carried out to investigate the impact of combustion technology on sewage sludge speciation of heavy metals from sewage sludge ash. This was achieved by conducting a sequential chemical extraction procedure Community Bureau Reference (BCR). This study indicated that heavy metals in sewage sludge ash were dominant in immobile fractions. Moreover, it was stated that the combustion technology of sewage sludge did not have a significant influence on the mobility of heavy metals in ashes


2010 ◽  
Vol 10 ◽  
pp. 286-297 ◽  
Author(s):  
Mary E. Exner ◽  
Hugo Perea-Estrada ◽  
Roy F. Spalding

The impact of 16 years (1988–2003) of management practices on high groundwater nitrate concentrations in Nebraska's central Platte River valley was assessed in a 58,812-ha (145,215-ac) groundwater quality management area intensively cropped to irrigated corn (Zea maysL.). Crop production and groundwater nitrate data were obtained from ~23,800 producer reports. The terrace, comprising ~56% of the study area, is much more intensively cropped to irrigated corn than the bottomland. From 1987 to 2003, average groundwater nitrate concentrations in the primary aquifer beneath the bottomland remained static at ~8 mg N/l. During the same period, average groundwater nitrate concentrations in the primary aquifer beneath the terrace decreased from 26.4 to 22.0 mg N/l at a slow, but significant (p< 0.0001), rate of 0.26 mg N/l/year. Approximately 20% of the decrease in nitrate concentrations can be attributed to increases in the amount of N removed from fields as a consequence of small annual increases in yield. During the study, producers converted ~15% of the ~28,300 furrow-irrigated terrace hectares (~69,800 ac) to sprinkler irrigation. The conversion is associated with about an additional 50% of the decline in the nitrate concentration, and demonstrates the importance of both improved water and N management. Average N fertilizer application rates on the terrace were essentially unchanged during the study. The data indicate that groundwater nitrate concentrations have responded to improved management practices instituted by the Central Platte Natural Resources District.


Author(s):  
Khaled D. Alotaibi ◽  
Melissa Arcand ◽  
Noura Ziadi

Abstract Background Continuous application of phosphorus (P) nutrient in association with its low recovery results in large amounts of P being accumulated in soil in different forms. Use of biochar can be a possible means to mobilize soil legacy P and increase its bioavailability. Therefore, the aim of this study was to identify the potential impact of a range of biochar types on P fractions in a long-term cultivated arid soil with high legacy P content. Methodology The soil was treated with biochar produced from four feedstock sources (BFS): sewage sludge (SSB), olive mill pomace (OPB), chicken manure (CMB), and date palm residues (DRB) pyrolyzed at 300, 500, or 700 °C in addition to an untreated control. The soil biochar mixture was incubated for 1 month followed by soil P fractionations using sequential chemical extraction to separate soil P into: labile (Resin-Pi, NaHCO3-Pi, NaHCO3-Po), moderately labile (NaOH-Pi, NaOH-Po), and non-labile (HCl-Pi and Residual-P) pools. Results Biochar addition clearly influenced most of the soil P fractions; however, the extent of this effect greatly varied depending on BFS and pyrolysis temperature (PT). The most evident biochar impact was observed with labile P pool, with the greatest increase being observed in NaHCO3-Pi fraction in most biochar treatments. Irrespective of PT, SSB and CMB were the most effective biochar type in increasing labile inorganic P; the SSB and CMB increased Resin-Pi by 77 and 206% and NaHCO3-Pi by 200 and 188%, respectively. In contrast, DRB made no changes in any P fraction. Differences in effects of biochar types on labile P is presumably related to the higher content of P in biowaste-based biochar compared to plant-based biochar which have much lower P content. The SSB, CMB, and OPB produced at low temperature reduced HCl-Pi content, indicating that these biochars may have stimulated organic matter decomposition and thereby dissolution of non-labile Ca-associated P to labile P forms. Conclusion Overall, biochar addition appeared to be an effective approach in enhancing legacy P availability in arid soil. However, further studies are necessary to verify these findings in the presence of plant and for a longer period. Graphic abstract


Author(s):  
Hu Cui ◽  
Yang Ou ◽  
Lixia Wang ◽  
Baixing Yan ◽  
Lu Han ◽  
...  

Phosphorus in agro-ecosystems has attracted much attention due to its impact on the nutrient supply of plants and the risk of loss of non-point source pollution. This study investigated the fraction distribution and release of phosphorus from soil aggregates structure under different land uses (rice, maize and soybean). The soil aggregates were characterized as large macro-aggregates (L-mac, >1 mm), small macro-aggregates (S-mac, 0.25–1 mm), micro-aggregates (MIC, 0.053–0.25 mm) and silt clay (SC, <0.053 mm) with the wet-sieving method. A sequential chemical extraction scheme was used to separate phosphorus into labile inorganic phosphorus (L-Pi), labile organic phosphorus (L-Po), moderately labile organic phosphorus (Ml-Po), iron-aluminum bound phosphorus (Fe.Al-P), calcium-magnesium bound phosphorus (Ca.Mg-P), humic phosphorus (Hu-P) and residual phosphorus (Re-P). Experimental results indicated that soil aggregates were mainly S-mac and MIC, followed by L-mac and SC, and they accounted for 52.16%, 25.20%, 14.23% and 8.49% in rice fields, 44.21%, 34.61%, 12.88% and 8.30% in maize fields, and 28.87%, 47.63%, 3.52% and 19.99% in soybean fields, respectively. Total nitrogen (TN), soil organic matter (SOM), Fe and Mn in soil aggregate fractions decreased with the reduction in soil aggregate grain-sizes. For phosphorus fractions (P-fractions), Fe.Al-P and Re-P tended to condense in L-mac and S-mac. MIC and SC were the primary carriers of Ca.Mg-P. Adsorption isotherm simulation results demonstrated that L-mac and S-mac have a strong capacity to retain phosphorus. In rice fields, phosphorus bioavailability and utilization rate were high. However, the P-fractions there were easily changed under aerobic-anaerobic conditions. Therefore, the risk of phosphorus loss during drainage should be given considerable attention.


2018 ◽  
Vol 15 (2) ◽  
pp. 1-20
Author(s):  
Sabri Embi ◽  
Zurina Shafii

The purpose of this study is to examine the impact of Shariah governance and corporate governance (CG) on the risk management practices (RMPs) of local Islamic banks and foreign Islamic banks operating in Malaysia. The Shariah governance comprises the Shariah review (SR) and Shariah audit (SA) variables. The study also evaluates the level of RMPs, CG, SR, and SA between these two type of banks. With the aid of SPSS version 20, the items for RMPs, CG, SR, and SA were subjected to principal component analysis (PCA). From the PCA, one component or factor was extracted each for the CG, SR, and RMPs while another two factors were extracted for the SA. Primary data was collected using a self-administered survey questionnaire. The questionnaire covers four aspects ; CG, SR, SA, and RMPs. The data received from the 300 usable questionnaires were subjected to correlation and regression analyses as well as an independent t-test. The result of correlation analysis shows that all the four variables have large positive correlations with each other indicating a strong and significant relationship between them. From the regression analysis undertaken, CG, SR, and SA together explained 52.3 percent of the RMPs and CG emerged as the most influential variable that impacts the RMPs. The independent t-test carried out shows that there were significant differences in the CG and SA between the local and foreign Islamic banks. However, there were no significant differences between the two types of the bank in relation to SR and RMPs. The study has contributed to the body of knowledge and is beneficial to academicians, industry players, regulators, and other stakeholders.


Author(s):  
M. Novokhatskyi ◽  
◽  
V. Targonya ◽  
T. Babinets ◽  
O. Gorodetskyi ◽  
...  

Aim. Assessment of the impact of the most common systems of basic tillage and biological methods of optimization of nutrition regimes on the realization of the potential of grain productivity of soybean in the Forest-Steppe of Ukraine. Methods. The research used general scientific (hypothesis, experiment, observation) and special (field experiment, morphological analysis) methods Results. The analysis of the results of field experiments shows that the conservation system of soil cultivation, which provided the formation of 27.6 c/ha of grain, is preferable by the level of biological yield of soybean. The use of other systems caused a decrease in the biological yield level: up to 26.4 c/ha for the use of the traditional system, up to 25.3 c/ha for the use of mulching and up to 23.0 c/ha for the use of the mini-till. With the use of Groundfix, the average biological yield of soybean grain increases to 25.6 c / ha for application rates of 5 l/ha, and to 28.2 c/ha for application rates of 10 l/ha when control variants (without the use of the specified preparation) an average of 22.6 c/ha of grain was formed with fluctuations in soil tillage systems from 21.0 (mini-bodies) to 25.8 c/ha (traditional).The application of Groundfix (10 l/ha) reduced the seed abortion rate from 11.0% (average without biofertilizer variants) to 8.0%, forming the optimal number of stem nodes with beans, increasing the attachment height of the lower beans and improving other indicators of biological productivity soybeans. Conclusions. It has been found that the use of the canning tillage system generates an average of 27.6 cent soybean grains, which is the highest indicator among the main tillage systems within the scheme of our research. The use of Groundfix caused a change in this indicator: if the variants with a conservative system of basic tillage without the use of biological preparation (control) were formed on average 24.1 c/ha, the use of Ground Licks caused the increase of biological productivity up to 29.4 c/ha, and at a dose of 10 l/ha biological yield was 32.2 c/ha. It was found that both the use of Groundfix and the basic tillage system influenced the elements of the yield structure: the density of the plants at the time of harvest depended more on the tillage system than on the use of Groundfix; the use of Groundfix and increasing its dose within the scheme of our studies positively reflected on the density of standing plants; the height of attachment of the lower beans and reduced the abortion of the seeds.


Sign in / Sign up

Export Citation Format

Share Document