scholarly journals Changing Fertilizer Management Practices in Sugarcane Production: Cane Grower Survey Insights

Author(s):  
Syezlin Hasan ◽  
James C. R. Smart ◽  
Rachel Hay ◽  
Sharyn Rundle-Thiele

Research focused on understanding wider systemic factors driving behavioral change is limited with a dominant focus on the role of individual farmer and psychosocial factors for farming practice change, including reducing fertilizer application in agriculture. Adopting a wider systems perspective, the current study examines change and the role that supporting services have on fertilizer application rate change. A total of 238 sugarcane growers completed surveys reporting on changes in fertilizer application along with factors that may explain behavior change. Logistic regressions and negative binomial count-data regressions were used to examine whether farmers had changed fertilizer application rates and if they had, how long ago they made the change, and to explore the impact of individual and system factors in influencing change. Approximately one in three sugarcane growers surveyed (37%) had changed the method they used to calculate fertilizer application rates for the cane land they owned/managed at some point. Logistic regression results indicated growers were less likely to change the basis for their fertilizer calculation if they regarded maintaining good relationships with other local growers as being extremely important, they had another source of off-farm income, and if they had not attended a government-funded fertilizer management workshop in the five years preceding the survey. Similar drivers promoted early adoption of fertilizer practice change; namely, regarding family traditions and heritage as being unimportant, having sole decision-making authority on farming activities and having attended up to 5 workshops in the five years prior to completing the survey. Results demonstrated the influence of government-funded services to support practice change.

Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 98
Author(s):  
Syezlin Hasan ◽  
James C. R. Smart ◽  
Rachel Hay ◽  
Sharyn Rundle-Thiele

Improved fertilizer management practice in sugarcane production is a key component in plans to improve Great Barrier Reef (GBR) water quality. Research focused on understanding the wider systemic factors that drive behavioral change in agriculture is currently limited, with the dominant focus on individual farmer and psycho-social factors. Adopting a wider systems perspective, this study examines farming behavior change and the role of supporting services among 238 sugarcane growers (74,597 hectares) in Queensland’s Wet Tropics region who completed surveys reporting on changes in the method they used to calculate fertilizer application rates, along with information on their farm business, socio-demographics, and self-reported importance ratings on a variety of topics. Informed by the Theory of Planned Behavior, survey data are analyzed using regression models to identify factors influencing the change from traditional to improved practice, and early adoption of improved practice. Results indicate growers were less likely to change fertilizer practice if they regarded maintaining good relationships with other local growers as being extremely important, had off-farm income, or had not attended a government-funded fertilizer management workshop in the five years preceding the survey. Similar drivers acted to promote or delay early adoption of improved practice. Results demonstrate the influence of government-funded services to support practice change.


2016 ◽  
Vol 154 (5) ◽  
pp. 812-827 ◽  
Author(s):  
M. J. BELL ◽  
J. M. CLOY ◽  
C. F. E. TOPP ◽  
B. C. BALL ◽  
A. BAGNALL ◽  
...  

SUMMARYIncreasing recognition of the extent to which nitrous oxide (N2O) contributes to climate change has resulted in greater demand to improve quantification of N2O emissions, identify emission sources and suggest mitigation options. Agriculture is by far the largest source and grasslands, occupying c. 0·22 of European agricultural land, are a major land-use within this sector. The application of mineral fertilizers to optimize pasture yields is a major source of N2O and with increasing pressure to increase agricultural productivity, options to quantify and reduce emissions whilst maintaining sufficient grassland for a given intensity of production are required. Identification of the source and extent of emissions will help to improve reporting in national inventories, with the most common approach using the IPCC emission factor (EF) default, where 0·01 of added nitrogen fertilizer is assumed to be emitted directly as N2O. The current experiment aimed to establish the suitability of applying this EF to fertilized Scottish grasslands and to identify variation in the EF depending on the application rate of ammonium nitrate (AN). Mitigation options to reduce N2O emissions were also investigated, including the use of urea fertilizer in place of AN, addition of a nitrification inhibitor dicyandiamide (DCD) and application of AN in smaller, more frequent doses. Nitrous oxide emissions were measured from a cut grassland in south-west Scotland from March 2011 to March 2012. Grass yield was also measured to establish the impact of mitigation options on grass production, along with soil and environmental variables to improve understanding of the controls on N2O emissions. A monotonic increase in annual cumulative N2O emissions was observed with increasing AN application rate. Emission factors ranging from 1·06–1·34% were measured for AN application rates between 80 and 320 kg N/ha, with a mean of 1·19%. A lack of any significant difference between these EFs indicates that use of a uniform EF is suitable over these application rates. The mean EF of 1·19% exceeds the IPCC default 1%, suggesting that use of the default value may underestimate emissions of AN-fertilizer-induced N2O loss from Scottish grasslands. The increase in emissions beyond an application rate of 320 kg N/ha produced an EF of 1·74%, significantly different to that from lower application rates and much greater than the 1% default. An EF of 0·89% for urea fertilizer and 0·59% for urea with DCD suggests that N2O quantification using the IPCC default EF will overestimate emissions for grasslands where these fertilizers are applied. Large rainfall shortly after fertilizer application appears to be the main trigger for N2O emissions, thus applicability of the 1% EF could vary and depend on the weather conditions at the time of fertilizer application.


Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 84
Author(s):  
Ziaf ◽  
Haider ◽  
Malik ◽  
Anwar ◽  
Riaz

Onion (Allium cepa L.), locally famous as “Piaz”, occupies a prominent place among commercial crops of Pakistan, by supplementing the income of small/marginal land-hold farmers. One of the major constraints of onion farming in Pakistan is poor nursery due to adoption of traditional planting methods and overfertilization, which ultimately increases cost of production and loss of resources. The current study, comprised of two experiments, was carried out at Vegetable Area, University of Agriculture Faisalabad, to determine the most suitable nursery raising system and fertilizer application rate for onion nursery in order to get maximum plant population of good quality seedlings. The first experiment comprised of four different nursery growing methods: (1) flat bed + broadcast sowing, (2) flat bed + line sowing, (3) raised bed (6 inches height from ground surface) + broadcast sowing, and (4) raised bed + line sowing. The largest plant population, and highest plant fresh and dry weights were obtained on flat beds under line sowing. The smallest plant population was obtained on raised beds under broadcast sowing, however, the lowest fresh and dry weights of seedlings were found with flat beds under broadcast sowing. The second experiment comprised of three diammonium phosphate (DAP) application rates (50 g, 100 g and 150 g per 272.25 ft−2 applied at one-week interval) and a control. The maximum shoot and root lengths as well as fresh and dry weights were obtained with 100 g DAP 272 ft−2. In conclusion, line sowing on flat beds and application of 100g DAP 272 ft−2 at one-week interval produced high quality nursery of onion cv. Phulkara. But, flat bed system must be coupled with proper drainage to avoid excessive water due to frequent rainfall in tropical areas.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 463D-463
Author(s):  
Kimberly Klock-Moore

The objective of this experiment was to compare the growth of impatiens `Accent Orange' in substrates containing compost made from biosolids and yard trimmings with four slow-release fertilizer application rates. Plugs of impatiens were transplanted into 400-ml pots filled with 100% compost as a stand-alone substrate or with 60%, 30%, or 0% compost combined with control substrate components. Six days after transplanting, all plants were top-dressed with 0.5, 1, 2, or 4 g of Nutricote 13N-5.7P-10.8K (type 180) per pot. Shoot dry mass increased as the percentage of compost in the substrate increased from 0% to 100%. Shoot dry mass also increased as the fertilizer application rate increased from 0.5 to 4 g per pot. Plants grown in 30% and 60% compost with 0.5 g of fertilizer were similar in size to plants grown in 0% compost with 4 g of fertilizer per pot. Plants grown in 100% compost at all of the fertilizer rates were larger than all other plants in this study.


2010 ◽  
Vol 10 ◽  
pp. 286-297 ◽  
Author(s):  
Mary E. Exner ◽  
Hugo Perea-Estrada ◽  
Roy F. Spalding

The impact of 16 years (1988–2003) of management practices on high groundwater nitrate concentrations in Nebraska's central Platte River valley was assessed in a 58,812-ha (145,215-ac) groundwater quality management area intensively cropped to irrigated corn (Zea maysL.). Crop production and groundwater nitrate data were obtained from ~23,800 producer reports. The terrace, comprising ~56% of the study area, is much more intensively cropped to irrigated corn than the bottomland. From 1987 to 2003, average groundwater nitrate concentrations in the primary aquifer beneath the bottomland remained static at ~8 mg N/l. During the same period, average groundwater nitrate concentrations in the primary aquifer beneath the terrace decreased from 26.4 to 22.0 mg N/l at a slow, but significant (p< 0.0001), rate of 0.26 mg N/l/year. Approximately 20% of the decrease in nitrate concentrations can be attributed to increases in the amount of N removed from fields as a consequence of small annual increases in yield. During the study, producers converted ~15% of the ~28,300 furrow-irrigated terrace hectares (~69,800 ac) to sprinkler irrigation. The conversion is associated with about an additional 50% of the decline in the nitrate concentration, and demonstrates the importance of both improved water and N management. Average N fertilizer application rates on the terrace were essentially unchanged during the study. The data indicate that groundwater nitrate concentrations have responded to improved management practices instituted by the Central Platte Natural Resources District.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1368
Author(s):  
Wenzheng Tang ◽  
Wene Wang ◽  
Dianyu Chen ◽  
Ningbo Cui ◽  
Haosheng Yang ◽  
...  

In order to meet the growing food demand of the global population and maintain sustainable soil fertility, there is an urgent need to optimize fertilizer application amount in agricultural production practices. Most of the existing studies on the optimal K rates for apple orchards were based on case studies and lack information on optimizing K-fertilizer management on a regional scale. Here, we used the method of combining meta-analysis with the K application rate-yield relationship model to quantify and summarize the optimal K rates of the Loess Plateau and Bohai Bay regions in China. We built a dataset based on 159 observations obtained from 18 peer-reviewed literature studies distributed in 15 different research sites and evaluated the regional-scale optimal K rates for apple production. The results showed that the linear plus platform model was more suitable for estimating the regional-scale optimal K rates, which were 208.33 and 176.61 kg K ha−1 for the Loess Plateau and Bohai Bay regions of China, respectively. Compared with high K application rates, the optimal K rates increased K use efficiency by 45.88–68.57%, with almost no yield losses. The optimal K rates also enhanced the yield by 6.30% compared with the low K application rates.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 740
Author(s):  
Ken Okamoto ◽  
Shinkichi Goto ◽  
Toshihiko Anzai ◽  
Shotaro Ando

Fertilizer application during sugarcane cultivation is a main source of nitrogen (N) loads to groundwater on small islands in southwestern Japan. The aim of this study was to quantify the effect of reducing the N fertilizer application rate on sugarcane yield, N leaching, and N balance. We conducted a sugarcane cultivation experiment with drainage lysimeters and different N application rates in three cropping seasons (three years). N loads were reduced by reducing the first N application rate in all cropping seasons. The sugarcane yields of the treatment to which the first N application was halved (T2 = 195 kg ha−1 N) were slightly lower than those of the conventional application (T1 = 230 kg ha−1 N) in the first and third seasons (T1 = 91 or 93 tons ha−1, T2 = 89 or 87 tons ha−1). N uptake in T1 and T2 was almost the same in seasons 1 (186–188 kg ha−1) and 3 (147–151 kg ha−1). Based on the responses of sugarcane yield and N uptake to fertilizer reduction in two of the three years, T2 is considered to represent a feasible fertilization practice for farmers. The reduction of the first N fertilizer application reduced the underground amounts of N loads (0–19 kg ha−1). However, application of 0 N in the first fertilization would lead to a substantial reduction in yield in all seasons. Reducing the amount of N in the first application (i.e., replacing T1 with T2) improved N recovery by 9.7–11.9% and reduced N leaching by 13 kg ha−1. These results suggest that halving the amount of N used in the first application can improve N fertilizer use efficiency and reduce N loss to groundwater.


2021 ◽  
Author(s):  
Chengpeng Huang ◽  
Li Wang ◽  
Xiaoqiang Gong ◽  
Zhangting Huang ◽  
Miaorong Zhou ◽  
...  

&lt;p&gt;The use of exogenous silicon (Si) amendments, such as Si fertilizers and biochar, can effectively increase crop Si uptake and the formation of phytoliths, which are siliceous substances that are abundant in numerous plant species. Phytolith-occluded carbon (C) (PhytOC) accumulation in soil plays an important role in long-term soil organic C (SOC) storage. Nevertheless, the effects of both Si fertilizer and biochar application on PhytOC sequestration in forest plant-soil systems have not been studied. We investigated the impact of Si fertilizer and biochar applications on 1) the PhytOC pool size, the solubility of plant and soil phytoliths, and soil PhytOC in soil physical fractions (light (LFOM) and heavy fractions of organic matter (HFOM)) in Moso bamboo (&lt;em&gt;Phyllostachys pubescens&lt;/em&gt;) forests; and 2) the relationships among plant and soil PhytOC concentrations and soil properties. We used a factorial design with three Si fertilizer application rates: 0 (S0), 225 (S1) and 450 (S2) kg Si ha&lt;sup&gt;&amp;#8722;1&lt;/sup&gt;, and two biochar application rates: 0 (B0) and 10 (B1) t ha&lt;sup&gt;&amp;#8722;1&lt;/sup&gt;. The concentrations of PhytOC in the bamboo plants and topsoil (0&amp;#8211;10 cm) increased with increasing Si fertilizer addition, regardless of biochar application. Biochar addition increased the soil PhytOC pool size, as well as the LFOM- and HFOM-PhytOC fractions, regardless of Si fertilizer application. The Si fertilizer application increased or had no effect on soil phytolith solubility with or without biochar application, respectively. Soil PhytOC was correlated with the concentration of soil organic nitrogen (R&lt;sup&gt;2&lt;/sup&gt;=0.32), SOC (R&lt;sup&gt;2&lt;/sup&gt;=0.51), pH (R&lt;sup&gt;2&lt;/sup&gt;=0.28), and available Si (R&lt;sup&gt;2&lt;/sup&gt;=0.23). Furthermore, Si fertilizer application increased plant and soil PhytOC by increasing soil available Si. Moreover, biochar application increased soil PhytOC concentration in LFOM-PhytOC and the unstable fraction of PhytOC. We conclude that Si fertilizer and biochar application promoted PhytOC sequestration in the plant-soil system and changed its distribution in physical fractions in the Moso bamboo plantation in subtropical China.&lt;/p&gt;


2019 ◽  
Vol 11 (4) ◽  
pp. 1165 ◽  
Author(s):  
Haixia Wu ◽  
Yan Ge

This paper takes 516 households who planted wheat in Heyang County, Shaanxi Province in 2018, as samples to construct three policy environments: Technological guidance for planting, subsidies for organic fertilizer application, and agricultural tailwater discharge standards. The experimental choice method was used to empirically analyze policy preferences during the process of fertilizer reduction. The results indicate that households show different preferences for the three policy settings: The fertilizer application rate is reduced by 6.98% if providing full technological guidance for farmers throughout the wheat planting process and is reduced by 5.18% under the background of providing appropriate organic fertilizer subsidies. The agricultural tailwater discharge standards have the least impact on the reducing level of chemical fertilizer application, with decreasing amounts of only 1.85% and 0.77% under the second-level and the first-level agricultural tailwater discharge standards, respectively. These results indicate that households in Heyang County, Shaanxi Province, demonstrate a low willingness to accept the agricultural tailwater discharge standards in order to cut down on the amount of chemical fertilizer application and the agricultural non-point source pollution. Therefore, compared with a compounded annual growth rate (CAGR) of 1% of fertilizer usage nationwide according to the Chinese Ministry of Agriculture, given the current planting environment and policies design, providing comprehensive technological guidance as well as price subsidies for the organic fertilizer can significantly and robustly reduce the excessive application of fertilizer in Heyang County, Shaanxi Province, under the best scenario, thereby further alleviating agricultural non-point source pollution.


Sign in / Sign up

Export Citation Format

Share Document