scholarly journals PRELIMINARY STUDY ON POTENTIAL EDIBLE COATINGS DERIVED FROM CARBOXYL METHYLCELLULOSE AND FUNGI CULTURED METABOLITES ON THE SHELF-LIFE EXTENSION OF SWEET-ORANGE (CITRUS SINENSIS)

2021 ◽  
Vol 9 (5) ◽  
pp. 663-671
Author(s):  
Iyabo O Omomowo ◽  
◽  
Afeez A Adedayo ◽  
Olawale I Omomowo ◽  
Olusola N Majolagbe ◽  
...  

This study focused on assessing the potential of formulated edible coatings derived from a metabolite of Trichoderma viride and Penicillium chrysogenum, combined with carboxyl methylcellulose (CMC) on the postharvest storage quality of orange fruits. The cultured metabolite of fungal bioagents combined with CMC, as well as glycerol (plasticizer), inadequate solution ratio based on wettability, was evaluated for microbiological quality and shelf-life extension of sweet orange. Thereafter, ascorbic acid, total soluble solids, pH, percentage weight loss, among other parameters were assessed for 7 weeks. The results of the study revealed that the pH of CMC + Trichoderma viride and CMC + P. chrysogenum coatings had 3.8 ± 0.02 and 3.17 ± 0.06 respectively, while it was reported 2.90 ± 0.04 for uncoated treatment. Also, the ascorbic acid and total soluble solids of the edible coated oranges were higher than the control. In addition, the percentage of weight loss was higher in the uncoated control compared to the potential edible coated oranges. Further, the microbial load count of the potential edible-coated oranges was less compared to the un-coated oranges. In conclusion, this formulated potential edible coating could be further improved upon and optimized for use in prolonging the storage of sweet oranges.

2015 ◽  
Vol 68 (2) ◽  
pp. 7679-7688
Author(s):  
Fabián Rico Rodríguez ◽  
Carolina Gutiérrez Cortés ◽  
Consuelo Díaz Moreno

Demand for minimally processed fruits have increased due to their nutritional value and an increasing change in consumption habits. Physicochemical, microbiological, structural and sensory changes were determined in minimally processed mangoes (MPM) with chitosan (CH) edible coatings and lemon and orange essential oils (EOL). The MPM was first dipped in citric acid and a texturizing solution and then dipped in CH and lemon or orange EOL coatings. Weight loss, sensory acceptance, total soluble solids, total acidity, ascorbic acid, color changes, firmness and elasticity, and microbiological changes were quantified for 11 days of refrigerated storage. The CH and lemon EOL coating had more acceptance than the other treatments. No differences were found (p>0.05) for weight loss, total acidity, ascorbic acid, firmness or elasticity. There was a high amount of total phenols due to the EOL composition, as well as a high antioxidant capacity in the early days of storage. This characteristic decreased in the final days of the study. There was a decrease in the microbial charge for the lemon EOL treatment, as compared to the other samples. The CH and lemon EOL coating helped to maintain the shelf-life of the MPM for 11 days of storage without affecting the sensory acceptance. The CH and Orange EOL coating did not have an effect on the MPM physicochemical attributes; however, the sensory acceptance was negatively affected with off-flavors conferred to the MPM.


2019 ◽  
Vol 57 (2) ◽  
pp. 230-237 ◽  
Author(s):  
Yulian Tumbarski ◽  
Radosveta Nikolova ◽  
Nadezhda Petkova ◽  
Ivan Ivanov ◽  
Anna Lante

Bacteriocins are a large group of antimicrobial compounds that are synthesized by representatives of the genus Bacillus and lactic acid bacteria. They are used extensively in the food industry as biopreservatives. Incorporated in the composition of edible coatings, bacteriocins can reduce microbial growth and decay incidence in perishable fruits, thus improving product shelf-life and commercial appearance. The present study aims to investigate the effect of edible coatings of 0.5 % carboxymethyl cellulose (CMC) enriched with a purified bacteriocin from Bacillus methylotrophicus BM47 on the shelf-life extension of fresh strawberries. During storage at 4 °C and 75 % relative humidity for 16 days, the measurements of mass loss, decay percentage, total soluble solids (TSS), titratable acidity (TA), pH, organic acids, total phenolic and anthocyanin contents and antioxidant activity were made. The results demonstrate that the application of edible coatings with 0.5 % CMC and 0.5 % CMC with bacteriocin (CMC+B) led to a significant decrease of mass loss in the treated strawberries compared to the uncoated fruit. After the 8th day of storage, significant reductions in decay percentage along with the absence of fungal growth in CMC+B-coated fruit were observed in comparison with the CMC-coated and control strawberries. During the second half of the storage period, CMC and CMC+B treatments reduced TSS amount in the coated fruit compared to the control, but did not affect the increase of TA and decrease of pH values that are normally associated with postharvest changes. The CMC and CMC+B coatings did not prevent the decrease of ascorbic acid, and total phenolic and anthocyanin contents during cold storage. The application of CMC and CMC+B coatings had a significant inhibitory effect on decreasing the antioxidant activity throughout the storage period and maintained the antioxidant levels in both treatments close to the initial value of 76.8 mmol Trolox equivalents per 100 g of fresh mass.


2019 ◽  
Vol 6 (1) ◽  
pp. 41-54
Author(s):  
Md. Belal Hossain Sikder ◽  
M Muksitu Islam

Banana is highly perishable fruit and shelf life is short, which leads resulting post-harvest loss consistently in Bangladesh. To lessen the post-harvest loss and draw out the time span of the usability of banana, green mature bananas were treated with 0.5%, 0.75%, and 1% chitosan, individually. For the subsequent treatments, bananas were stored at room temperature. The viability of the coating in extending fruit’s shelf-life was assessed by evaluated total weight loss, ash content, total soluble solids (TSS), pH, titratable acidity (TA), disease severity and shelf life during the storage period. Chitosan coating reduced respiration activity, thus delaying ripening and the rate of decay due to senescence. The chitosan-coated banana samples had a better outcome on weight loss, ash content, pH, TSS, TA and disease severity values as compared to control samples. Banana coated with 1% chitosan showed less weight reduction and lessened obscuring than different treatments and control. Disease severity was astoundingly lessened by chitosan covering application. Chitosan coating extended banana up to the shelf life of more 2 to 4 days. From this investigation, it demonstrated that 1% chitosan was more appropriate in extending the shelf-life and better quality of banana during ripening and storage at ambient temperature.


2019 ◽  
Vol 121 (7) ◽  
pp. 1592-1604 ◽  
Author(s):  
Sandriane Pizato ◽  
Raquel Costa Chevalier ◽  
Marcela Félix Dos Santos ◽  
Tailine Saturnino Da Costa ◽  
Rosalinda Arévalo Pinedo ◽  
...  

Purpose The purpose of this paper is to evaluate the shelf-life of minimally processed pineapple when subjected to the use of different edible coatings. Design/methodology/approach The pineapples were peeled and cut into cubes. The gums were prepared by dissolving them in distilled water and then heated to total dissolution. After calcium chloride, citric acid and ascorbic acid and glycerol were added in the solutions. The pieces of pineapple were completely submerged in the respective solutions and then drained. Four treatments were obtained, namely: T1 – control treatment (pineapple without coating); T2 – pectin; T3 – tara; T4 – xanthan. The cubes were stored in PET by 12 days at 4±1°C. Analyzes were carried out of mass loss, pH, titratable acidity, soluble solids, microbiological and sensory analysis. Findings It was possible to observe that the use of evaluated coatings was efficient to maintain the conservation of minimally processed pineapple in all analyzes, when compared with the control sample. The treatment with tara gum showed the best results to those obtained by the other studied gums. Practical implications The study may help small-scale establishments to increase the shelf-life of minimally processed pineapple. Originality/value Tara gum reduced the mass loss, delayed the microbial growth and maintained the sensorial quality of minimally processed pineapples for a longer time.


2016 ◽  
Vol 8 (4) ◽  
pp. 1987-1991
Author(s):  
Rakesh Kumar ◽  
H. R. Sharma ◽  
Manish Kumar

A study was conducted in tomato using an 6 x 6 diallel crossing design excluding reciprocals to quantify the magnitude of heterosis and to identify the best heterotic combinations for post harvest and nutritional quality attributes viz. pericarp thickness (mm), fruit firmness (g/0.503 cm2), shelf life (days), total soluble solids (oBrix), lycopene content (mg/100g) and ascorbic acid (mg/100g) which are considered essential in present day hybrid varieties of tomato from consumer point of view. All the 22 entries (6 parents, 15 F1 hybrids and 1 standard check) were field evaluated using randomized complete block design with three replications during Kharif 2015-16. Highly significant heterosis (5% level of significance) of positive nature was found for pericarp thickness (22.90%, 32.20% and 5.62%), fruit firmness (17.32%, 56.72% and 9.21%), shelf life (17.54%, 24.87% and 9.57%), total soluble solids (24.44%, 51.44% and 34.20%), lycopene content (28.75%, 35.05% and 25.63%) and ascorbic acid (19.07%,30.00% and 17.85%) over the better, mid and standard check, respectively. Three promising crosses viz., Solan Lalima x EC-1055, Solan Lalima x EC-1057 and Solan Lalima x EC-1058 were identified as high yielding F1 combinations having superiority to post harvest and nutritional quality traits in tomato and can be promoted for release and commercial cultivation.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Emmanuel M. Amwoka ◽  
Jane L. Ambuko ◽  
Hutchinson M. Jesang’ ◽  
Willis O. Owino

An on-farm study was conducted among smallholder mango farmers in Embu County of Kenya to demonstrate the effectiveness of simple harvest and postharvest handling practices to attain cold chain and extend mango shelf life. The recommended cold chain practices were compared with common farmers' practices. 'Apple', 'Ngowe', 'Kent', and 'Tommy Atkins' harvested at the mature green stage were used in the study. To demonstrate proper cold chain, fruits were harvested before 8 am, transported in crates lined with dampened newspapers, precooled in an evaporative charcoal cooler, and then transferred to a Coolbot™ cold room (10 ± 2°C). To demonstrate common farmers’ practices, fruits were harvested at noon, transported in open crates, and stored at ambient room conditions (25 ± 7°C, 55 ± 15%RH). The air and fruit pulp temperatures were monitored regularly using HUATO® data loggers. During the storage period, a random sample of 3 fruits (per variety) per treatment was taken after every 3 days to evaluate ripening related changes including physiological weight loss, colour, firmness, and total soluble solids. Proper cold chain practices resulted in low fruit pulp temperature (average 11°C) compared to 25°C for fruits handled using common practices by farmers leading to faster ripening as evidenced by lower peel/pulp colour and firmness, higher physiological weight loss, and higher total soluble solids. For example, flesh firmness of fruits under poor cold chain practices decreased from initial 36.6 N, 45.9 N, 66.5 N, and 46.8 N to 3.1 N, 2.4 N, 3.2 N, and 3.1 N for ‘Apple’, ‘Ngowe’, ‘Kent’, and ‘Tommy Atkins’ varieties, respectively, at the end of storage while that of fruits under proper cold chain practices reduced to 2.3 N, 1.5 N, 3.9 N, and 2.9 N, respectively, for the four varieties at the end of storage. Overall, proper cold chain management extended mango shelf life by 18 days. Application of simple harvest and handling practices coupled with simple storage technologies can attain and maintain the cold chain required to preserve quality and extend shelf life. This could increase the marketing and storage periods for later selling and processing, respectively, of mango fruits.


DYNA ◽  
2020 ◽  
Vol 87 (212) ◽  
pp. 267-276
Author(s):  
Claudia Lorena Macias Socha ◽  
Julia Constanza Reyes Cuellar

The guava (Psidium guajava L.), is a nutritious fruit which is of climacteric nature and highly perishable. This fruit is grown in Santander and Boyacá and 90% of its use is in the agro-based industry. Post-harvest losses of this fruit have a great impact on the economy of the region. In order to prolong the shelf life of the fruit, a post-harvest treatment based on the encapsulation of 3 mM Citral in liposomal nanocontainers composed of 10,12-pentacosadiynoic acid and Lecithin was devised. The characterization of the nanocontainers encapsulating Citral was performed by fluorescence and DLS spectroscopy. The treatment's effectiveness in the fruits was evaluated for 15 days using the following parameters: weight loss, color, total soluble solids, acidity, ripening index, and Vitamin C concentration. The results show a better appearance in the treated fruits with respect to untreated fruits (Blank) for up to 12 days of storage.


Foods ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1361
Author(s):  
Muhammad Adil Rehman ◽  
Muhammad Rafique Asi ◽  
Amjad Hameed ◽  
Leslie D. Bourquin

Guava is an important climacteric fruits in terms of taste and aroma, which contains various vital nutrients such as minerals, carotenoids, ascorbic acid, and polyphenols. At ambient conditions, it exhibits a short shelf life, which makes it difficult for marketing and subsequent storage. Therefore, it is necessary to develop procedures to extend its shelf life and conserve quality. For this purpose, an aloe vera (AV) gel coating was assessed for its potential to enhance the shelf life of guava fruits. Guava fruits coated with AV gels (0, 20, 40, 60 and 80%, v/v) were evaluated for postharvest shelf life extension, changes in quality attributes, anti-oxidative activities, and flavonoid content when stored at ambient conditions (23 ± 2 °C and 70–75% relative humidity) for 12 days. The AV gel-treated fruits showed reduced increments in total sugar, malondialdehyde, and total carotene contents compared to untreated controls. AV gel-treated fruits exhibited higher contents of ascorbic acid, flavonoids (quercetin and rutin), and total phenolics in comparison to control fruits. Moreover, AV gel-treated fruits displayed greater activities of superoxide dismutase, catalase, and ascorbate peroxidase, along with higher antioxidant capacity and higher levels of total soluble solids, than untreated fruits. These results demonstrate that AV gel coating, especially at high concentrations, can be considered an eco-friendly and non-chemical substitute treatment for maintaining the postharvest quality of guava fruit.


2015 ◽  
Vol 9 (2) ◽  
pp. 55-60 ◽  
Author(s):  
Fereshteh Khosravi ◽  
Mahdyeh Khosravi ◽  
Elnaz Pourseyedi

In the present study the extended storage life of cut apples (Red Delicious) examined using nano zeolite particles and potassium permanganate. Titratable acidity, total soluble solids, pH and weight loss was measured .Visual observations of fruits during storage were investigated. The results showed that pH, soluble solids and fruit weight loss has increased during storage. The acidity of fruits stored with nano zeolite was less decreased as compared with potassium permanganate. The growth of moulds on preserved fruit with nano zeolite was much less after 10 days of storage as compared with potassium permanganate.DOI: http://dx.doi.org/10.3126/ijls.v9i2.12050 International Journal of Life Sciences 9 (2) : 2015; 55-60


Sign in / Sign up

Export Citation Format

Share Document