scholarly journals Wave Statistics for the Middle Adriatic Sea

2016 ◽  
Vol 52 (1) ◽  
pp. 33-47 ◽  
Author(s):  
Andrea Farkas ◽  
Joško Parunov ◽  
Marko Katalinić

The paper presents the methodology and results of the sea state statistics development for the middle Adriatic Sea. The study is based on the World Waves Atlas containing data of sea states in the Adriatic Sea calibrated using different satellite missions and numerical wave model simulations during the period of past 23 years. Wave scatter diagram and wave rose at the location in the middle Adriatic Sea are derived from the data. The 3-parametric Weibull distribution and the log-normal distribution for significant wave height and peak spectral periods respectively, are fitted through the data in the World Waves Atlas. Based on available data, the relation between wind speed and wave height is established by regression analysis. Comparison of the relationship between the significant wave height and peak spectral period is performed between the data from the World Waves Atlas and the Tabain’s wave spectrum, frequently used for sea states in the Adriatic Sea. Finally, the most probable extreme sea states for different return periods are calculated and results are compared with another relevant study for the long-term prediction of sea states in the Adriatic Sea.

Author(s):  
Céline Drouet ◽  
Nicolas Cellier ◽  
Jérémie Raymond ◽  
Denis Martigny

In-service monitoring can help to increase safety of ships especially regarding the fatigue assessment. For this purpose, it is compulsory to know the environmental conditions encountered: wind, but also the full directional wave spectrum. During the EU TULCS project, a full scale measurements campaign has been conducted onboard the CMA-CGM 13200 TEU container ship Rigoletto. She has been instrumented to measure deformation of the ship as well as the sea state encountered during its trip. This paper will focus on the sea state estimation. Three systems have been installed to estimate the sea state encountered by the Rigoletto: An X-band radar from Ocean Waves with WAMOS® system and two altimetric wave radars from RADAC®. Nevertheless, the measured significant wave height can be disturbed by several external elements like bow waves, sprays, sea surface ripples, etc… Furthermore, ship motions are also measured and can provide another estimation of the significant wave height using a specific algorithm developed by DCNS Research for the TULCS project. As all those estimations are inherently different, it is necessary to make a fusion of those data to provide a single estimation (“best estimate”) of the significant wave height. This paper will present the data fusion process developed for TULCS and show some first validation results.


2016 ◽  
Author(s):  
Ruben Carrasco ◽  
Michael Streßer ◽  
Jochen Horstmann

Abstract. Retrieving spectral wave parameters such as the peak wave direction and wave period from marine radar backscatter intensity is very well developed. However, the retrieval of significant wave height is difficult because the radar image spectrum (a backscatter intensity variance spectrum) has to be transferred to a wave spectrum (a surface elevation variance spectrum) using a modulation transfer function (MTF) which requires extensive calibration for each individual radar setup. In contrast to the backscatter intensity, the Doppler velocity measured by a coherent radar is induced by the radial velocity of the surface scattering and its periodic component is mainly the contribution of surface waves. Therefore, the variance of the Doppler velocity can be utilized to retrieve the significant wave height. Analysing approximately 100 days of Doppler velocity measurements of a coherent on receive radar operating at X-band with vertical polarization in transmit and receive, a simple relation was derived and validated to retrieve significant wave heights. Comparison to wave measurements of a wave rider buoy as well as an acoustic wave and current profiler resulted in a root mean square error of 0.24 m with a bias of 0.08 m. Furthermore, the different sources of error are discussed and investigated.


Author(s):  
Adil Rasheed ◽  
Jakob Kristoffer Süld ◽  
Mandar Tabib

Accurate prediction of near surface wind and wave height are important for many offshore activities like fishing, boating, surfing, installation and maintenance of marine structures. The current work investigates the use of different methodologies to make accurate predictions of significant wave height and local wind. The methodology consists of coupling an atmospheric code HARMONIE and a wave model WAM. Two different kinds of coupling methodologies: unidirectional and bidirectional coupling are tested. While in Unidirectional coupling only the effects of atmosphere on ocean surface are taken into account, in bidirectional coupling the effects of ocean surface on the atmosphere are also accounted for. The predicted values of wave height and local wind at 10m above the ocean surface using both the methodologies are compared against observation data. The results show that during windy conditions, a bidirectional coupling methodology has better prediction capability.


1978 ◽  
Vol 1 (16) ◽  
pp. 2 ◽  
Author(s):  
Michel K. Ochi

This paper discusses the statistical properties of long-term ocean and coastal waves derived from analysis of available data. It was found from the results of the analysis that the statistical properties of wave height and period obey the bi-variate log-normal probability law. The method to determine the confidence domain for a specified confidence coefficient is presented so that reliable information in severe seas where data are always sparse can be obtained from a contingency table. Estimation of the extreme significant wave height expected in the long-term is also discussed.


2018 ◽  
Vol 5 (1) ◽  
pp. 119
Author(s):  
Karina Santoso ◽  
I Dewa Nyoman Nurweda Putra ◽  
I Gusti Bagus Sila Dharma

Bali is one of the islands where there are many surf zones with various characteristics. In addition, Bali is also a heaven with a classy wave for the surfers of the world. One of the most challenging places to surf in Bali is Uluwatu Beach. Uluwatu Beach is ranked the 3rd best surf spot in the world version of CNN Travel in 2012. Wind causes sea waves, therefore wind data can be used to estimate the height and direction of the waves. Wave Hindcasting with Sverdrup, Munk and Bretschneider (SMB) method is calculated based on wind data for 10 years (2001 - 2010) from BMKG Ngurah Rai Station - Denpasar to obtain a significant wave height and period. In this research, it is necessary to approach through Hindcasting procedure, wave transformation analysis and surfing Terminology in determining the type of breaking wave and classification of surf zone in Uluwatu Beach area. Wave calculation result in Uluwatu Beach dominated by wave that coming from west side with significant wave height (Hs) of 0.98 m and significant wave period (Ts) of 5.21 s. The wave height due to the influence of wave refraction and shoaling is 0.976 m. The breaking wave height obtained from the calculation is 1.04 m at a depth of 0.849 m. From the result in this research, it can be concluded that the breaking wave type that occurred at Uluwatu Beach is plunging type according to the calculation result from its Irribaren number (0.4 <Ni <2.3). The classification of the surf zone at Uluwatu Beach based on its breakup type of wave is thought to be a good zone for surfers on intermediate level.


2017 ◽  
Author(s):  
M. Anjali Nair ◽  
V. Sanil Kumar

Abstract. Understanding of the wave spectral shapes is of primary importance for the design of marine facilities. In this paper, the wave spectra collected from January 2011 to December 2015 in the coastal waters are examined to know the temporal variations in the wave spectral shape. For 31.15 % of the time, peak frequency is between 0.08 and 0.10 Hz and the significant wave height is also relatively high (~ 1.55 m) for waves in this class. The slope of the high-frequency tail of the monthly average wave spectra is high during the Indian summer monsoon period (June–September) compared to other months and it increases with increase in significant wave height. There is no much interannual variation in slope for swell dominated spectra during the monsoon, while in the non-monsoon period when wind-seas have much influence, the slope varies significantly. Since the high-frequency slope of the wave spectrum is within the range 3–4 during the monsoon period, Donelan spectrum shows better fit for the wave spectra in monsoon months compared to other months.


Author(s):  
Maziar Golestani ◽  
Mostafa Zeinoddini

Knowledge of relevant oceanographic parameters is of utmost importance in the rational design of coastal structures and ports. Therefore, an accurate prediction of wave parameters is especially important for safety and economic reasons. Recently, statistical learning methods, such as Support Vector Regression (SVR) have been successfully employed by researchers in problems such as lake water level predictions, and significant wave height prediction. The current study reports potential application of a SVR approach to predict the wave spectra and significant wave height. Also the capability of the model to fill data gaps was tested using different approaches. Concurrent wind and wave records (standard meteorological and spectral density data) from 4 stations in 2003, 2007, 2008 and 2009 were used both for the training the SVR system and its verification. The choice of these four locations facilitated the comparison of model performances in different geographical areas. The SVR model was then used to obtain predictions for the wave spectra and also time series of wave parameters (separately for each station) such as its Hs and Tp from spectra and wind records. New approach was used to predict wave spectra comparing to similar studies. Reasonably well correlation was found between the predicted and measured wave parameters. The SVR model was first trained and tested using various methods for selecting training data. Also different values for SVM parameters (e.g. tolerance of termination criterion, cost, and gamma in kernel function) were tested. The best possible results were obtained using a Unix shell script (in Linux) which automatically implements different values for different input parameters and finds the best regression by calculating statistical scores like correlation of coefficient, RMSE, bias and scatter index. Finally for a better understanding of the results, Quantile-Quantile plots were produced. The results show that SVR can be successfully used for prediction of Hs and wave spectrum out of a series of wind and spectral wave parameters inputs. Also it was noticed that SVR is an efficient tool to be used when data gaps are present in the data.


1995 ◽  
Vol 117 (4) ◽  
pp. 294-297 ◽  
Author(s):  
J. C. Teixeira ◽  
M. P. Abreu ◽  
C. Guedes Soares

Two wind models were developed and their results were compared with data gathered during the Wangara experiment, so as to characterize their uncertainty. One of the models was adopted to generate the wind fields used as input to a second generation wave model. The relative error in the wind speed was considered in order to assess the uncertainties of the predictions or the significant wave height. Different time steps for the wind input were also used to determine their effect on the predicted significant wave height.


2009 ◽  
Vol 637 ◽  
pp. 267-284 ◽  
Author(s):  
KARINA B. HJELMERVIK ◽  
KARSTEN TRULSEN

Linear refraction of waves on inhomogeneous current is known to provoke extreme waves. We investigate the effect of nonlinearity on this phenomenon, with respect to the variation of significant wave height, kurtosis and occurrence of freak waves. Monte Carlo simulations are performed employing a modified nonlinear Schrödinger equation that includes the effects of a prescribed non-potential current. We recommend that freak waves should be defined by a local criterion according to the wave distribution at each location of constant current, not by a global criterion that is either averaged over, or insensitive to, inhomogeneities of the current. Nonlinearity can reduce the modulation of significant wave height. Depending on the configuration of current and waves, the kurtosis and probability of freak waves can either grow or decrease when the wave height increases due to linear refraction. At the centre of an opposing current jet where waves are known to become large, we find that freak waves should be more rare than in the open ocean away from currents. The largest amount of freak waves on an opposing current jet is found at the jet sides where the significant wave height is small.


2021 ◽  
Vol 13 (19) ◽  
pp. 3833
Author(s):  
Meng Sun ◽  
Jianting Du ◽  
Yongzeng Yang ◽  
Xunqiang Yin

Accurate numerical simulation of ocean waves is one of the most important measures to ensure shipping safety, offshore engineering construction, etc. The use of wave observations from satellite is an efficient way to correct model results. The goal of this paper is to assess the performance of assimilation in the MASNUM wave model for the Indian Ocean. The assimilation technique is based on Ensemble Adjusted Kalman Filter, with a variable ensemble constructed by the dynamic sampling method rather than ensemble members of wave model. Observations of significant wave height from satellites Jason-3 and CFOSAT are regarded as assimilation data and independent validation data, respectively. The results indicate good performance in terms of absolute mean error for significant wave height. Model error decreases by roughly 20–40% in high-sea conditions.


Sign in / Sign up

Export Citation Format

Share Document