scholarly journals Numerical Investigation of FRP-Strengthened CHS Columns

Author(s):  
Themistoklis Tsalkatidis

The use of external CFRP jacket is examined as a retrofitting technique that improves the ductility and the load carrying capacity of the steel tube. The study focuses on the interaction between the steel and the jacket, which is treated as a contact problem. The contact conditions in the steel-CFRP interface are represented by interface laws. Finite element modeling is used to simulate the physical problem and the results of the numerical analysis are presented and discussed. CFRP-jacket is proved to be an effective strengthening method for hollow steel columns.

2008 ◽  
Vol 33-37 ◽  
pp. 321-326 ◽  
Author(s):  
Xiu Gen Jiang ◽  
Yang Yang ◽  
Feng Jie Zhang ◽  
Jin San Ju ◽  
Xiao Chuan You

Nonlinear finite element model analysis of the casing plug joints of steel tubular has been realized by ANSYS software. The law of load-carrying capability and stiffness of joint are separately gained by changing the ratio of length and diameter (R/L) and the ratio of the casing length and the main tube length (l/L). The influence of the casing thickness on the load-carrying capability and stiffness are also discussed. The results indicated that the load-carrying capability and stiffness of the joints both increase with the ratio(R/L) increment and the ratio of the casing length and main tube length (l/L). When the main tube thickness is equal to casing thickness, the load-carrying capacity of joints achieves the most.


2021 ◽  
Vol 353 ◽  
pp. 01013
Author(s):  
Tingwei Wang

Finite element method and fiber model method were used to calculate the load-carrying capacity of the specimens. Based on the experimental and theoretical analysis, simplified calculation method of the load-carrying capacity for this kind of member is proposed. It indicates that finite element method result is relatively small, fiber model method result accords well with the experimental result. Circular reinforced concrete members covered with steel tube presents both the characteristics of reinforced concrete and concrete filled steel tube member, showing higher load-carrying capacity and greater deformability. The load-carrying capacity of circular reinforced concrete members covered with steel tube can be calculated by the means of the method of reinforced concrete member with confined concrete. The result predicted by the simplified method is in good agreement with the experimental result.


Author(s):  
David Mikolášek ◽  
Antonín Lokaj ◽  
Jiří Brožovský ◽  
Oldřich Sucharda

Abstract The paper analyses a drawn steel joint in round logs for which several types of reinforcements have been proposed. The load-carrying capacity of the reinforcements have been tested in laboratories. At the same time, numerical modelling has been performed - it has focused, in particular, on rigidity of the joints during the loading process. Physical and geometrical nonlinearities have been taken into account. The Finite Element Method and 3D computation models have been used in the numerical calculations.


2016 ◽  
Vol 857 ◽  
pp. 136-141
Author(s):  
P. Gajalakshmi ◽  
S. Aravind ◽  
P. Soundarapandian

Concrete in-filled steel tube (CIFST) columns are mainly used as structural members in buildings located in seismic zones. CIFST columns prone to buckling and technique is required to control the buckling of concrete filled steel tubes when they are subjected to cycles of loading. In this work, CIFST columns wrapped with fibre reinforced polymer laminates (FRPL) to prevent the local buckling. Experimental and analytical study of CIFST columns externally wrapped with FRPL have been conducted. Theoretical study is also conducted to find the ultimate load carrying capacity of CIFST columns. The parameters involved in this investigation are type of fibre and shape of the steel tube. The CIFST columns are tested under lateral loading to determine the number of cycles to failure and energy absorption capacity and to observe the hysteresis behaviour. The analytical study comprises of finite element modeling of CIFST columns wrapped with FRPL. The results obtained from the experimental investigation and finite element model are compared. The results revealed that FRPL wrapped circular CIFST columns have higher load carrying capacity and energy absorption capacity and exhibit ductile behavior when compared to CIFST columns.


1999 ◽  
Author(s):  
Markus A. Wimmer

Abstract Third-body wear is a frequently reported phenomenon in TKR, however, little attention has been paid to the load carrying capacity of third bodies. It may be possible that these particles accumulate to a quantity, sufficient to separate the articulating surfaces of the bearing. To address this question, the particle number for a complete separation was theoretically determined and compared to realistic values. Based on the results, a total separation of the artificial knee articulation appears likely and should be considered when interpreting surface wear based on common stress analyses. This seems to be reflected by clinical observation that flat tibial components do not wear faster than dished ones.


2017 ◽  
Vol 26 (6) ◽  
pp. 096369351702600
Author(s):  
Min Hou ◽  
Jiangfeng Dong ◽  
Lang Li ◽  
Shucheng Yuan ◽  
Qingyuan Wang

In order to make an effective use of the recycled aggregate concrete (RAC), a total of six steel tube RAC columns and six basalt fiber (BF) reinforced RAC columns, including six columns that were externally strengthened with aramid fiber reinforced polymer (AFRP) sheets, were fabricated and tested. This were to provide a strengthening solution to upgrade the load carrying capacity, ductility and rigidity of the RAC filled steel tube columns. Besides, the recycled coarse aggregate (RCA) replacement ratios for production of RAC was analyzed. The results show that the load carrying capacity and ultimate displacements of the RAC filled ST columns could be improved greatly by adding of basalt fiber, especially for the specimens with 50% and 100% RCA replacement ratio. The similar result was also found for the specimens strengthened with AFRP reinforcement, along with the stiffness of the columns were enhanced obviously. Moreover, the highest improving on the load carrying capacity, stiffness and ultimate displacement was found in the specimens both reinforced by adding of BF and strengthening of AFRP. However, the failure modes of the specimens with BF reinforced RAC gave a higher deformability than the one with AFRP strengthening arrangement.


2018 ◽  
Vol 219 ◽  
pp. 02002
Author(s):  
Małgorzata Gordziej-Zagórowska ◽  
Elżbieta Urbańska-Galewska

The influence of eccentricity at intersections of truss members on the load carrying capacity of the truss joint is presented in the paper. The research truss elements were designed as cold-formed open cross section. Analytical calculations, numerical analysis and experimental research were conducted to reveal how the eccentricity affects the effort of material in the joint area. The results of analysis and investigations are compared and discussed. The main achievement of the tests carried out is statement that slender plane members of the compression chords are safe compared with the results of analytical calculations.


2020 ◽  
Vol 299 ◽  
pp. 1184-1189
Author(s):  
V.V. Zhukov ◽  
Anton V. Eremin ◽  
D.V. Stepanec

In this article, the object of study is a three–layer honeycomb panel with fixing elements (FE), which are used for transporting the panel, and fixing it to the spacecraft. The goal of the work is to determine experimentally the load carrying capacity of the fixing elements under various types of loading, to determine the load carrying capacity of the honeycomb panel of the spacecraft at fixing points and further comparison of the experimental results with the finite element method results calculated by MSC.Patran / Nastran. A method for conducting static tests of fixing elements of a spacecraft honeycomb panel under an external load is described, a description of computer technology of a finite–element solution to the problem of static strength of a honeycomb panel structure in the MSC.Patran environment is presented, and a finite–element model of a honeycomb panel is designed. An assessment of the strength of a three–layer structure at fixing points was carried out, followed by validation of the finite–element model of a honeycomb panel. On the basis of the validated model, the evaluation of the strength of the honeycomb structure was carried out; based on results obtained, the conclusion has been made about the convergence of the results by the finite element method with the results obtained during the experiment.


Sign in / Sign up

Export Citation Format

Share Document