scholarly journals Study on the Photonic Band Gaps of the Face Centered Cubic Crystals

Author(s):  
K.B.S.K.B. Jayawardana ◽  
K.A.I.L. Wijewardena Gamalath

Since the dielectric contrast of photonic crystals play an important role in determining the existence of a photonic gap, the photonic energy bands, density of states of face centered cubic structured photonic crystals formed from spheres of several dielectric materials placed in air were calculated using the plane wave expansion method. A complete band gap was obtained between second and third bands with a gap to mid gap frequency ratio in the range for the dielectric contrast in the range 11-16 with dielectric spheres of radius with a filling factor of 0.134 and fordielectric contrast of 200 with . A complete gap was not found for the dielectric contrast of 3.9. A complete band gap can be obtained for filling factors for the dielectric contrast in the range with an optimum band gap for the filling factor 0.134 while GaAs () has almost a constant optimum band gap in this range. The largest gap to mid gap ratio of was obtained for GaP (). For dielectric spheres of and larger gap to mid gap ratio were obtained for the dielectric contrast while the largest were obtained for . The only dielectric material BaSrTiO3 () which gives a band gap for the filling factor of 0.4524 can be used in microwave applications.

2007 ◽  
Vol 21 (16) ◽  
pp. 2761-2768 ◽  
Author(s):  
XIYING MA ◽  
ZHIJUN YAN

The size influence of silica microspheres on the photonic band gap (PBG) of three-dimensional face-centered-cubic (fcc) photonic crystals (PCs) is studied by means of colloidal photonic crystals, which are self-assembled by the vertical deposition technique. Monodispersed SiO 2 microspheres with a diameter of 220–320 nm are synthesized using tetraethylorthosilicate (TEOS) as a precursor material. We find that the PBG of the PCs shifts from 450 nm to 680 nm with silica spheres increasing from 220 to 320 nm. In addition, the PBG moves to higher photon energy when the samples are annealed in a temperature range of 200–700°C. The large shift results from the decrease in refraction index of silica due to moisture evaporation.


Author(s):  
K.B.S.K.B. Jayawardana ◽  
K.A.I.L. Wijewardena Gamalath

The photonic energy bands of body centered cubic photonic crystals formed from SiO2, GaP, Si, InAs, GaAs, InP, Ge and BaSrTiO3 dielectric spheres drilled in air and air holes drilled in these dielectric mediums were calculated using the plane wave expansion method. The filling factor for each dielectric material was changed until a complete energy gap was obtained and then the density of states was calculated. There were no complete band gaps for air spheres drilled in these eight dielectric mediums. The lattice constants were determined by using wavelengths in the region . The variation of the band gap widths with the filling factor and the variation of gap width to midgap frequency ratios with dielectric contrast were investigated. The largest band gap width of 0.021 for normalized frequency was obtained for GaP for the filling factor of 0.0736. The mode filed distributions were obtained by guiding a telecommunication wave with wavelength through a photonic cell formed from GaP spheres in air with a filling factor of 0.0736 for transverse electric and magnetic modes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Somayeh Safat ◽  
Foad Buazar ◽  
Salim Albukhaty ◽  
Soheila Matroodi

AbstractThis contribution presents the biosynthesis, physiochemical properties, toxicity and photocatalytic activity of biogenic CeO2 NPs using, for the first time, marine oyster extract as an effective and rich source of bioreducing and capping/stabilizing agents in a one-pot recipe. CeO2 NPs formation was initially confirmed through the color change from light green to pale yellow and subsequently, their corresponding absorption peak was spectroscopically determined at 310 nm with an optical band-gap of 4.67 eV using the DR-UV technique. Further, XRD and Raman analyses indicated that nanoceria possessed face-centered cubic arrangements without any impurities, having an average crystallite size of 10 nm. TEM and SEM results revealed that biogenic CeO2 NPs was approximately spherical in shape with a median particle size of 15 ± 1 nm. The presence of various bioorganic substances on the surface of nanoparticles was deduced by FTIR and TGA results. It is found that marine-based nanoceria shows no cytotoxic effect on the normal cell, thus indicating their enhanced biocompatibility and biosafety to living organisms. Environmentally, due to energy band gap, visible light-activated CeO2 nanocatalyst revealed superior photocatalytic performance on degradation of methylene blue pollutant with removal rate of 99%. Owing to the simplicity, cost-effectiveness, and environmentally friendly nature, this novel marine biosynthetic route paves the way for prospective applications of nanoparticles in various areas.


2005 ◽  
Vol 72 (11) ◽  
Author(s):  
Hong-Bo Chen ◽  
Yong-Zheng Zhu ◽  
Yan-Ling Cao ◽  
Yan-Ping Wang ◽  
Yuan-Bin Chi

2011 ◽  
Vol 1343 ◽  
Author(s):  
Sheng D. Chao ◽  
Hsin Y. Peng

ABSTRACTConventional photonic crystals exhibit low-lying full band gaps for the dielectric contrast smaller than 15. As the dielectric contrast increases, the band gap patterns change characteristics and exhibit interesting properties. In particular, the dispersion curves near the band gap region become concentrated to the middle band frequencies and exhibit an overall red shift in frequency. For a dielectric column photonic crystal made of a hexagonal lattice of circular cylinders, the maximum full band gap was found at the dielectric contrast as high as 27.5, which is attainable by using ceramics materials. The gap opens at high-lying bands, has simultaneous TM and TE band edges, and exhibit flattened dispersion curves near the band edges.


Sign in / Sign up

Export Citation Format

Share Document