Occurrence of antibiotic resistance and integronase genes in Taihu Lake

2016 ◽  
Vol 1 (1) ◽  
pp. 71 ◽  
Author(s):  
Jian Wang Wang ◽  
Haiqing Pu ◽  
Lin Ye ◽  
Liangyan Chen ◽  
Xuxiang Zhang

Antibiotic resistance genes (ARGs), a potential threat to the health of humans and animals, have been widely detected in various environments. However, not much information about ARGs in freshwater lakes have been recorded. In this study, we investigated the occurrence of 17 kinds of ARGs and three types of integronase genes in Taihu Lake (China), an important drinking water source for local residents. Fecal coliforms were also isolated from the water and sediments for antimicrobial susceptibility tests and related ARGs detection. Results showed that tetracycline resistance gene tetC, sulfanilamide resistance genes sul1 and sul2, and class 1 integronase gene int1 were present in all water and sediment samples. TetG was present in all water samples but was mainly distributed in sediment samples from the northern region of Taihu Lake. β-Lactam resistance gene blaOXA-1 was present in all water samples but was absent in the sediment samples. TetM and tetO were found present in water and sediment samples from the western area of the lake. Remarkably, 95% of isolated fecal coliforms were resistant to trimethoprim and multi-drug resistant isolates were also observed. Sul1 and tetC genes were found to be carried by isolates resistant to corresponding antibiotics. This study provided baseline information about the occurrence of ARGs and integronase genes in Taihu Lake and the results may extend our knowledge about antibiotic resistance of microbial communities in the lake.

2020 ◽  
Author(s):  
Jorge Agramont ◽  
Sergio Gutierrez-Cortez ◽  
Enrique Joffré ◽  
Åsa Sjöling ◽  
Carla Calderon Toledo

AbstractWater and sediment samples affected by mining activities were collected from three lakes in Bolivia, the pristine Andean lake Pata Khota, the Milluni Chico lake directly impacted by acid mine drainage, and the Uru-Uru lake located close to Oruro city and highly polluted by mining activities and human wastewater discharges. Physicochemical parameters, including metal compositions, were analyzed in water and sediment samples. Antibiotic resistance genes (ARGs), were screened for, and verified by quantitative PCR together with the mobile element class 1 integron (intl1) as well as crAssphage, a marker of human fecal pollution. The gene intl1 showed a positive correlation with sul1, sul2, tetA and blaOXA-2. CrAssphage was only detected in Uru-Uru lake and its tributaries and significantly higher abundance of ARGs were found in these sites. Multivariate analysis showed that crAssphage abundance, electrical conductivity and pH were positively correlated with higher levels of intl1 and ARGs. Taken together our results suggest that fecal pollution is the major driver of higher ARGs and intl1 in wastewater and mining contaminated environments.


1992 ◽  
Vol 25 (11) ◽  
pp. 17-24 ◽  
Author(s):  
M. S. Tabucanon ◽  
S. Watanabe ◽  
C. Siriwong ◽  
R. Boonyatumanond ◽  
S. Tanabe ◽  
...  

Water and sediment samples collected from the lower Chao Phraya River and a canal along the river during 1988 - 1991 were analyzed to determine the current status of contamination by organochlorine pesticides, such as HCHs, DDTs, aldrin, dieldrin and chlordanes. Aldrin and dieldrin had high frequencies of occurrence in water samples. The medians of concentrations of these pesticides were approximately one order of magnitude larger than total HCHs and total DDTs. Residue levels of these pesticides varied significantly. Relatively higher levels of aldrin were observed in the upstream; in contrast, residue levels of DDTs were higher in urban area. These phenomena seem to relate to the spraying purpose of these pesticides. Decreasing trends in the residue levels of pesticides during monitoring periods, however, were not observed clearly. Residue levels of organochlorines in the sediment samples were in the order of magnitude of PCBs, DDTs, chlordanes and HCHs.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
W. M. Dimuthu Nilmini Wijeyaratne ◽  
L. G. Y. J. G. Wadasinghe

The present study was conducted to assess the cytotoxicity of water and sediments of an industrial effluent receiving water body in the western province of Sri Lanka using Allium cepa bioassay. Six sampling sites (Site A: Urban; B: Industrial; C: Water intake for public water supply; D: Industrial; E: Agricultural; F: Reference) were selected from the study area. Ten replicate water and sediment samples were collected from each site, and physical and chemical parameters were measured using standard analytical methods. Cytotoxicity of water and sediment elutriates were measured using Allium cepa bioassay. Despite the significant spatial variations, the overall water and sediment quality parameters of the study sites were in accordance with the standard ambient environment parameters to sustain a healthy aquatic life. In the A. cepa bulbs exposed to water samples, significant root growth variations were not observed within 48 hours of exposure. However, significant root length variations were observed in A. cepa bulbs exposed to sediment elutriates within the 48-hour exposure and the percentage root growth inhibition increased with increase of exposure time. Similar trend was observed in mitotic activity indicating significantly lower mitotic indices (compared to that of the reference site) in A. cepa root tip cells exposed to sediment elutriates than those exposed to water samples. Further, the highest number of nuclear abnormalities was recorded from root tip cells of A. cepa exposed to water and sediment samples from sites B, C, and D. Therefore, it is of extreme importance to identify the composition and speciation of these cytogenotoxic compounds in the tropical climatic conditions and to propose possible clean-up or treatment solutions to overcome this environmental and public health risk associated problem.


2002 ◽  
Vol 12 (03n04) ◽  
pp. 199-208
Author(s):  
YUANXUN ZHANG ◽  
DEYI LI ◽  
YINSONG WANG ◽  
WAIGUO SHEN ◽  
MIN ZHI ◽  
...  

In cooperation with the Shanghai Environmental Specimen Bank (SESB) research project and in support of the Shanghai government's comprehensive plan to harness the Suzhou River, we collected water and sediment samples in the every spring season since 1998. The elemental analysis of sediment and water samples was performed by the PIXE technique using the 3 × 2 MeV NEC Tandem accelerator at the Taipei Institute of Physics. The characterization of á and â radioactive levels for water and sediment samples was performed using BH1216, low-background, radioactivity instrument at the Shanghai Institute of Nuclear Research. PIXE results showed that the content of Cl , K , Ca , Cr , Mn , Fe , Zn and Pb in river water gradually decreased with the rising tide. At high tide, their concentrations were minimum, and then once again increased toward the ebb tide. The analysis also demonstrated that the radioactivity of water samples had been gradually decreasing year by year. It was found that the decreasing rate of á radioactivity was a little quicker than that of â radioactivity. Further aspects of environmental data evaluation and assessment are also discussed in detail.


2015 ◽  
Vol 14 (1) ◽  
pp. 142-154 ◽  
Author(s):  
E. M. Elmahdy ◽  
G. Fongaro ◽  
C. D. Schissi ◽  
M. M. Petrucio ◽  
C. R. M. Barardi

This paper aims to quantify human adenovirus (HAdV), rotavirus species A (RVA), and hepatitis A virus (HAV) in surface water and sediments and to determine the viability of HAdV in these samples. Water and sediment samples were collected, and HAdV, RVA, and HAV were quantified by real-time polymerase chain reaction (PCR); HAdV was also evaluated for infectivity by a plaque assay (PA). For the water samples, HAdV was detected in 70.8% of the summer collections, with 82.4% containing infectious HAdV; the HAdV incidence in winter was 62.5%. For the sediment samples, the incidence of HAdV was 37.5% in the summer collections, with 66.7% containing infectious HAdV; the HAdV incidence in winter was 37.5%. RVA was detected in 20.8 and 45.8% of surface water samples collected in summer and winter, respectively, and 8.3 and 12.5% of sediment samples collected in summer and winter, respectively. HAV was detected only in surface waters, with 54.8 and 12.5% positivity in summer and winter samples, respectively. This study demonstrated that enteric viruses are present in water and sediments and that the presence of infectious viruses should be investigated whenever possible for quantitative microbial risk assessment studies. Combined analyses of water and sediments are important for reliable public health risk analysis of recreational and lagoon waters.


2020 ◽  
Vol 8 (8) ◽  
pp. 1122
Author(s):  
Jorge Agramont ◽  
Sergio Gutiérrez-Cortez ◽  
Enrique Joffré ◽  
Åsa Sjöling ◽  
Carla Calderon Toledo

An increased abundance of antibiotic resistance genes (ARGs) in aquatic environments has been linked to environmental pollution. Mining polluted sites with high concentration of metals could favor the in situ coselection of ARGs, whereas wastewater discharges release fecal antibiotic resistant bacteria in the environment. To study the effect of human fecal contamination and mining pollution, water and sediment samples affected by mining activities and sewage discharges were collected from three lakes in Bolivia, the pristine Andean lake Pata Khota, the Milluni Chico lake directly impacted by acid mine drainage, and the Uru-Uru lake located close to Oruro city and highly polluted by mining activities and human wastewater discharges. Physicochemical parameters, including metal composition, were analyzed in water and sediment samples. ARGs were screened for and verified by quantitative polymerase chain reaction (PCR) together with the mobile element class 1 integron (intl1), as well as crAssphage, a marker of human fecal pollution. The gene intl1 was positively correlated with sul1, sul2, tetA, and blaOXA-2. CrAssphage was only detected in the Uru-Uru lake, and its tributaries and significantly higher abundance of ARGs were found in these sites. Multivariate analysis showed that crAssphage abundance, electrical conductivity, and pH were positively correlated with higher levels of intl1 and ARGs. Taken together, our results suggest that fecal pollution is the major driver of higher levels of ARGs and intl1 in environments contaminated by wastewater and mining activities.


2021 ◽  
Vol 9 ◽  
Author(s):  
Li Zhao ◽  
Hong Chang ◽  
Fuhong Sun ◽  
Hailei Su

We developed a sensitive method for monitoring six natural (aldosterone) and synthetic mineralocorticoids (canrenone, spironolactone, 7β-spironolactone, 7α-thio spironolactone, and 7α-thiomethyl spironolactone) in sediment and water using ultra-performance liquid chromatography–electrospray tandem mass spectrometry, and then 30 water and 30 sediment samples were analyzed to reveal their occurrence and distributions in Taihu Lake. All target six mineralocorticoids were detected in sediment and water samples with the detection frequencies as high as 96–100%. The median concentrations of mineralocorticoids ranged from 0.04 ng/L (7α-thiomethyl spironolactone) to 14 ng/L (aldosterone) in water and 0.01 ng/g (7β-spironolactone and canrenone) to 1.44 ng/g (aldosterone) in sediment in dry weight. Natural aldosterone was the predominant mineralocorticoid detected in both water and sediment samples, indicating the mineralocorticoid pollution in Taihu Lake was mainly derived from human and/or animal excrement rather than pharmaceutical industry and usage. Two metabolites 7β-spironolactone and 7α-thio spironolactone were first found in this study. Low ratios of metabolites to spironolactone were observed in sediment (0.05–0.75) in contrast to water (0.12–2.26), indicating that spironolactone was prone to degradation in water phase compared to sediment environment.


1978 ◽  
Vol 24 (10) ◽  
pp. 1217-1226 ◽  
Author(s):  
Robert P. Griffiths ◽  
Steven S. Hayasaka ◽  
Thomas M. McNamara ◽  
Richard Y. Morita

A total of 91 water, 8 ice, and 50 sediment samples taken from the southwestern Beaufort Sea were analyzed for relative microbial activity, bacterial cell concentrations, and percentage of respiration (mineralization). These samples were taken during three field-study periods (August to September 1975; April 1976; and August 1976). Both the relative microbial activity and the cell concentrations in water and sediment samples were lower during the April (winter) sampling period than in the August–September (summer) studies. The percentage of respiration of labeled glutamic acid was higher in the winter water samples than in the summer samples. The water samples showed higher percentage of respiration values than did sediment samples. The average maximimum potential rate of glutamic acid uptake was as high or higher than those observed in studies made in more temperate waters. Samples of melted sea ice showed levels of relative microbial activity that were about the same as that found in the associated seawater. When 1:1 mixtures of melted ice and seawater were analyzed for altered microbial activity, little effect could be detected.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shuzhan Zhang ◽  
Jiaxin Zhang ◽  
Hong Chang ◽  
Fuhong Sun

Study of the occurrence and fate of thyroid hormones in aquatic environments requires a highly sensitive method that is capable of detecting such compounds at sub-ng/L concentrations. By using isotope-dilution UPLC-MS/MS, we developed a sensitive method for quantifying thyroxine (T4), 3,3ʹ,5-triiodothyronine (T3), 3,3ʹ,5ʹ-triiodothyronine (rT3), iodotyrosine (MIT), and 3,5-diiodotyrosine (DIT) in lake water and sediment samples. MIT and DIT were first reported in aquatic environments in this study and were detected in all sediment and water samples with concentrations of 0.01–1.1 ng/g dw and 1.9–9.9 ng/L, respectively. T4 was only observed in sediment, with the measured concentrations and frequency of <LOQ-0.07 ng/L and 87%, respectively. T3 and rT3 were not found in this study. It was observed that the MIT/DIT ratios in sediment (2.4 ± 0.92) were significantly higher than those in water (0.84 ± 0.18), and the MIT/DIT ratios significantly correlated with DOC values in water samples, indicating that sorption to organic C could be of important mechanism. In addition, aquaculture, livestock and poultry farms probably were the important sources for the pollution of MIT, DIT, and T4 in Taihu Lake.


Sign in / Sign up

Export Citation Format

Share Document