scholarly journals How Wildlife Respond to Natural Noise

Author(s):  
Dylan G.E. Gomes

Animal sensory systems have evolved in a natural din of noise since the evolution of sensory organs. Anthropogenic noise is a recent addition to the environment, which has had demonstrable, largely negative, effects on wildlife. Yet, we know relatively little about how animals respond to natural sources of noise, which can differ substantially in acoustic characteristics from human-caused noise. Here we review the noise literature and suggest an evolutionary approach for framing the study of novel, anthropogenic sources of noise. We also push for a more quantitative approach to acoustic ecology research. To build a better foundation around the effects of natural noise on wildlife, we experimentally and continuously broadcast whitewater river noise across a landscape for three summers. Additionally, we use spectrally-altered river noise to explicitly test the effects of masking as a mechanism driving patterns. We then monitored bird, bat, and arthropod abundance and activity and assessed predator-prey relationships with bird and bat foraging assays and by counting prey in spider webs. Birds and bats largely avoided high sound levels in noisy environments. Bats also avoided acoustic environments dominated by high frequency noise while birds avoided noise that overlapped with their song, the latter trend suggesting that communication is impaired. Yet, when sound levels were high overlapping noise was not any more disruptive than non-overlapping noise, which suggests that intense noise interferes with more than communication. Avoidance of noise that overlapped in frequency with song was stronger for low-frequency singers. Bats that employ higher frequency echolocation were more likely to avoid high sound level noise; we explore potential explanations for this pattern. Most arthropod Orders responded to noise, yet the directions of effects were not consistent across taxa. Some arthropods increased in abundance in high sound level areas - perhaps in response to the absence of bird and bat predators. Reinforcing this possibility, visually foraging birds and passively listening bats decreased foraging effort beyond what was expected based on declines in abundance and activity. Orb-weaving spiders increased dramatically in high sound level areas, which could be due to a release from predation, an increase in prey capture, or direct attraction to high sound level river noise. Overall, we demonstrated significant changes to many vertebrate and invertebrate taxa during playback of whitewater river noise. We were able to parse out the effects of sound pressure level and background frequency on these individual taxa and predator-prey behaviors. Our results reveal that animals have likely long been affected by particular characteristics of noise, which may help explain contemporary responses to anthropogenic noise. As the spatial and temporal footprint of anthropogenic noise is orders of magnitude greater than intense natural acoustic environments, the insights provided by our data increase the importance of mitigating noise pollution impacts on animals and their habitats. It is clear that natural noise has the power to alter animal abundances and behavior in a way that likely reverberates through entire communities and food webs. Future work should focus on strengthening the relationships between these potential predators and prey and highlight how the structure of the system changes under such noise treatments.

2021 ◽  
Author(s):  
Kate Antonia Sweet

Natural sounds are an often overlooked, yet important component of an animal's habitat. The acoustic environment may be especially significant during foraging, because a noisy world can limit auditory surveillance. Here, we investigated how natural noise structures the foraging vigilance trade-off to understand how intense acoustic environments may have shaped antipredator behavior across the evolutionary past, and better inform conservation efforts in the present. First, in Chapter 1, I directly compared the foraging and vigilance behaviors of captive song sparrows (Melospiza melodia) in anthropogenic and natural noise. We recorded foraging trials in 4 playback conditions (roadway traffic, whitewater rivers, whitewater rivers shifted upwards in spectrum, and amplitude-modulated rivers), along with an ambient control to assess which acoustic characteristics make a foraging habitat risky. We found that sparrows increased vigilance or decreased foraging in 4 of 6 behaviors when foraging in higher sound levels, regardless of playback type, indicating a broad role for noise in antipredator behavior. Next, in Chapter 2, I sought to understand the ecological relevance of these findings by examining wild bird behavior. To do so, we broadcast the same whitewater river noise as used in our lab experiment across a riparian landscape. To understand if the spectra of the acoustic environment affected bird behavior, we also presented spectrally-shifted whitewater noise to produce a gradient of frequencies. Using 18 bird feeders placed across this landscape, we recorded and analyzed behavior of the three most common bird species. Black-headed grosbeaks (Pheucticus melanocephalus) and lazuli buntings (Passerina amoena) demonstrated an increase in at least one vigilance behavior in high sound levels, while American goldfinches (Spinus tristis) and grosbeaks altered some behaviors according to background frequency. Clearly, adjusting antipredator behavior in noise is conserved across diverse bird species. Taken together, our findings imply that natural soundscapes have likely shaped behavior long before anthropogenic noise, and that high sound levels negatively affect the foraging vigilance trade-off in both anthropogenic and naturally intense acoustic environments. These results are concerning in light of ever-increasing anthropogenic noise pollution.


Author(s):  
A. O. Ajayeoba

Increased rate of noise-associated risk factors such as speech interference and reduction in productivity, necessitated that control and regulation measures be put in place, to contain anthropogenic noise pollution in the students’ hostels. Therefore, this study assessed the various anthropogenic sources of noise pollution in students’ hostels and developed a Sound Level Monitor and Control (SLMC) device. 1250 undergraduate students across 5 students’ residential zones were sampled for demographics and investigations were conducted into respondents’ perceived medical history, identification of noise sources, and evaluation of hearing loss. Effects of noise levels were evaluated using 100 respondents’ rooms per zone following standard procedures, considering Sound-System-Only (SSO), Generators-Only (GO), and combination of Sound-System-and-Generator (SSG), loud-conversations, etc., as sources of noise. However, a noise control device incorporated with a circuit breaker was developed. The respondents were 51.2% male and 48.8% female, with 58% in the age range 18 – 27 years. The medical history showed that 1.2 and 6.4% had a hearing problem in short and long times, respectively, while 43.6% affirmed that SSO was a major noise pollution causal factor. SSO, GO, loud conversations, traffic, and grinding machines were identified as the prominent sources of anthropogenic induced noise. The minimum average SL result gave a value of 62.8400dB for both ventilated and unventilated rooms, which is 14% above 55dB threshold value recommended by the National Environmental Standards and Regulations Enforcement Agency. The developed SLMC device gave notification at the SL above 55dB for 15 seconds before disconnecting the sound system if not regulated.


Akustika ◽  
2019 ◽  
Vol 32 ◽  
pp. 335-345
Author(s):  
Walter Montano

The gas extraction wells are in Amazonian rainforest and by them there are their industrial facilities. The pipeline has about 800 km with four pumps stations and two compressor stations. The challenge of conducting sound measurements was important-there is no specialized literature-and other noise "sources" are howler monkeys, cicadidae chirping, woodpeckers, trees´foliage, etc. However the problem is simply because those fixed industrial facilities are the only ones. People live in isolated hamlet on the side of dirt roads, so they are exposed 24/7 to the continuous noise; at homes 4 km away from the plants the sound level is 60 dBC, but in the spectrum of ILFN tones could not be identified. This Paper presents the procedures that were developed to identify the ILFN tones, improving the methods proposed in ISO 1996-2, writing a software that "automatically eliminates" the sound levels that don´t belong to the industry,


2019 ◽  
Vol 9 (24) ◽  
pp. 5566 ◽  
Author(s):  
Juliana Araújo Alves ◽  
Lígia Torres Silva ◽  
Paula Remoaldo

Noise pollution is the second most harmful environmental stressor in Europe. Portugal is the fourth European country most affected by noise pollution, whereby 23.0% of the population is affected. This article aims to analyze the effects of exposure to low frequency noise pollution, emitted by power poles and power lines, on the population’s well-being, based on a study of “exposed” and “unexposed” individuals in two predominantly urban areas in north-western Portugal. To develop the research, we used sound level (n = 62) and sound recording measurements, as well as adapted audiometric test performance (n = 14) and surveys conducted with the resident population (n = 200). The sound levels were measured (frequency range between 10 to 160 Hz) and compared with a criterion curve developed by the Department for Environment, Food and Rural Affairs (DEFRA). The sound recorded was performed 5 m away from the source (400 kV power pole). Surveys were carried out with the “exposed” and “unexposed” populations, and adapted audiometric tests were performed to complement the analysis and to determine the threshold of audibility of “exposed” and “unexposed” volunteers. The “exposed” area has higher sound levels and, consequently, more problems with well-being and health than the “unexposed” population. The audiometric tests also revealed that the “exposed” population appears to be less sensitive to low frequencies than the “unexposed” population.


2021 ◽  
Vol 8 ◽  
Author(s):  
Carrie C. Wall ◽  
Samara M. Haver ◽  
Leila T. Hatch ◽  
Jennifer Miksis-Olds ◽  
Rob Bochenek ◽  
...  

Passive acoustic data collection has grown exponentially over the past decade resulting in petabytes of data that document our ocean soundscapes. This effort has resulted in two big data challenges: (1) the curation, management, and global dissemination of passive acoustic datasets and (2) efficiently extracting critical information and comparing it to other datasets in the context of ecosystem-based research and management. To address the former, the NOAA National Centers for Environmental Information recently established an archive for passive acoustic data. This fast-growing archive currently contains over 100 TB of passive acoustic audio files mainly collected from stationary recorders throughout waters in the United States. These datasets are documented with standards-based metadata and are freely available to the public. To begin to address the latter, through standardized processing and centralized stewardship and access, we provide a previously unattainable comparison of first order sound level-patterns from archived data collected across three distinctly separate long-term passive acoustic monitoring (PAM) efforts conducted at regional and national scales: NOAA/National Park Service Ocean Noise Reference Station Network, the Atlantic Deepwater Ecosystem Observatory Network, and the Sanctuary Soundscape Monitoring Project. Nine sites were selected from these projects covering the Alaskan Arctic, Northeast and Central Pacific, Gulf of Mexico, Caribbean Sea, and Mid and Northwest Atlantic. Sites could generally be categorized into those strongly influenced by anthropogenic noise (e.g., vessel traffic) and those that were not. Higher sound levels, specifically for lower frequencies (<125 Hz), and proximity to densely populated coastal zones were common characteristics of sites influenced by anthropogenic noise. Conversely, sites with lower overall sound levels and away from dense populations resulted in soundscape patterns influenced by biological sources. Seasonal variability in sound levels across selected decidecade bands was apparent for most sites and often represented changes in the presence or behavior of sound-producing species. This first order examination of levels across projects highlights the utility of these initial metrics to identify patterns that can then be examined in more detail. Finally, to help the PAM community collectively and collaboratively move forward, we propose the next frontier for scalable data stewardship, access, and processing flow.


Author(s):  
Nilesh J. Washnik ◽  
Jeffrey A. Russell ◽  
Ishan Bhatt ◽  
Rebecca Meier ◽  
Olivia Chuzie ◽  
...  

Objectives: (1) To measure sound exposures of marching band and non-marching band students during a football game, (2) to compare these to sound level dose limits set by NIOSH, and (3) to assess the perceptions of marching band students about their hearing health risk from loud sound exposure and their use of hearing protection devices (HPDs). Methods: Personal noise dosimetry was completed on six marching band members and the band director during rehearsals and performances. Dosimetry measurements for two audience members were collected during the performances. Noise dose values were calculated using NIOSH criteria. One hundred twenty-three marching band members responded to a questionnaire analyzing perceptions of loud music exposure, the associated hearing health risks, and preventive behavior. Results: Noise dose values exceeded the NIOSH recommended limits among all six marching band members during rehearsals and performances. Higher sound levels were recorded during performances compared to rehearsals. The audience members were not exposed to hazardous levels. Most marching band members reported low concern for health effects from high sound exposure and minimal use of HPDs. Conclusion: High sound exposure and low concern regarding hearing health among marching band members reflect the need for comprehensive hearing conservation programs for this population.


Author(s):  
Yalcin Yildirim ◽  
Diane Jones Allen ◽  
Amy Albright

Experts in diverse fields have investigated sound in cities throughout the United States. This research aims to examine sound levels and determine its contributors at the transit-oriented development (TOD) station and neighborhood levels by studying selected Dallas Area Rapid Transit (DART) light rail stations. A multilevel analysis was performed to model the likelihood of TOD stations and neighborhoods affecting sound levels, controlling for station amenities, socio-demographics and built environment characteristics. Sound measurements were sampled in three time intervals with 15 min sampling over weekdays and weekends at TOD and non-TOD stations by a type II SPL meter that was mounted on a small camera tripod at a height of 1.5 m, at a distance of 1.5 m from rails and curbs. The research team found that amenities, built environmental characteristics, and neighborhood features have significant implications on sound levels at both the TOD station and the neighborhood level, which affects quality of life (QoL). TOD stations that include more amenities have a greater level of significance on sound levels. Additionally, neighborhoods with a pervasive street grid configuration, public facilities, and built environment densities are significantly associated with a likelihood of high sound levels. Conversely, higher population densities and intersection densities decrease the likelihood of a high sound level environment. These patterns provide an arena for transportation, urban, and environmental planning and policymaking to generate transformative solutions and policies.


2020 ◽  
Author(s):  
Matteo Sebastianelli ◽  
Daniel T. Blumstein ◽  
Alexander N. G. Kirschel

AbstractEffective communication in birds is often hampered by background noise, with many recent studies focusing on the effect of anthropogenic noise on passerine bird song. Continuous low-frequency natural noise is predicted to drive changes in both frequency and temporal patterning of bird vocalizations, but the extent to which these effects may also affect birds that lack vocal learning is not yet fully understood. Here we use a gradient of exposure to natural low-frequency noise to assess whether it exerts selective pressure on vocalizations in a species whose songs are innate. We tested whether three species of Pogoniulus tinkerbirds adapt their song when exposed to a source of continuous low-frequency noise from ocean surf. We show that dominant frequency increases the closer birds are to the coast in all the three species, and in line with higher noise levels, indicating that ocean surf sound may apply a selective pressure on tinkerbird songs. As a consequence, tinkerbirds adapt their songs with an increase in frequency to avoid the masking effect due to overlapping frequencies with ambient noise, therefore improving long-range communication with intended receivers. Our study provides for the first time, compelling evidence that natural ambient noise affects vocalizations in birds whose songs are developed innately. We believe that our results can also be extrapolated in the context of anthropogenic noise pollution, hence providing a baseline for the study of the effects of low-frequency ambient noise on birds that lack vocal learning.Significance StatementBirdsong is constantly under selection as it mediates key interactions such as mate attraction, competition with same-sex individuals for reproduction and competition with heterospecifics for space-related resources. Any phenomenon that interferes with communication can therefore have a profound impact on individual fitness. Passerines are more likely to avoid the masking effect of background noise because of their higher vocal flexibility. Many non-passerine species lacking such flexibility might therefore be more vulnerable to the negative effects on their fitness of exposure to low-frequency background noise. Species incapable of adapting their signals to background noise are predicted to disappear from noisy areas. Despite this, we show that species that lack song learning may show an adaptive response to natural noise which may develop over evolutionary timescales.


1994 ◽  
Vol 71 (1) ◽  
pp. 59-78 ◽  
Author(s):  
X. Wang ◽  
M. B. Sachs

1. We have studied responses of anteroventral cochlear nucleus (AVCN) units to single-formant stimuli (SFS), in an effort to make quantitative comparisons with responses observed in auditory-nerve fibers (ANFs) to the same stimuli (Wang and Sachs 1993) and to reveal some of the signal processing mechanisms at the AVCN. Single-unit recordings and subsequent analyses were performed on each type of commonly recorded units, namely primarylike (Pri), primarylike with notch (PN), sustained chopper (ChS), transient chopper (ChT), and onset chopper (OnC), as well as a few onset (On) units, from the AVCN in anesthetized cats. The responses were obtained at a wide range of sound levels and at a frequency range of 1-10 kHz. Modulation in the envelopes of discharge patterns was quantified by a measure called modulation depth. 2. At moderate to high sound levels, most AVCN units were found to have enhanced modulation depth compared with that of ANFs, although the degree of enhancement varies among different types. All AVCN units, except Pri type, showed an enhancement in modulation depth over that of the highest of ANFs at moderate to high sound levels in the order of (from the highest to the lowest) On, OnC, ChT/PN, and ChS. Specifically, 1) modulation depth in Pri units was comparable to that of high spontaneous rate (SR) ANFs at low sound levels and to that of low/medium SR ANFs at high sound levels (in dB SPL). When sound level was normalized by unit threshold, Pri units, on average, exhibited only limited enhancement in envelope modulation at high sound levels (> 80 dB re threshold); 2) PN units showed substantially enhanced modulation depth over that of all SR groups of ANFs at moderate to high sound levels in dB SPL or dB re threshold scales; 3) significant enhancement in modulation depth was seen in both ChS and ChT units, with a slightly higher modulation depth in ChT type across sound levels (in dB SPL or dB re threshold); 4) modulation depth of OnC units was higher than those of primary-like (Pri and PN) and chopper (ChS and ChT) units at a wide range of sound levels; 5) responses from a limited sample of On units showed the highest modulation depth among all types of AVCN units. 3. Detailed analysis revealed that the enhanced modulation depth in the responses of AVCN units is the result of increased envelope peak height and decreased envelope minimum, relative to those of ANFs.(ABSTRACT TRUNCATED AT 400 WORDS)


2014 ◽  
Vol 548-549 ◽  
pp. 1623-1626
Author(s):  
Tao Jin ◽  
Qi Huang ◽  
Yong Ding ◽  
Li Feng Zhu

To explore the noise generated by bridges during operational period, the equivalent continuous sound pressure levels of 12 bridges in the city of Ningbo were measured and analyzed. The measured data show that (1) Although the measured sound levels of these bridges meet the requirement of Chinese codes, they are near the maximum limit and the vibration and noise reduction is necessary; (2) A-weighted sound level of bridge is close to that of the road nearby; (3) Z-weighted sound level of bridge is much greater than that of the road nearby, it indicates that the bridge noise contains much low frequency noise, so that A-weighted sound level can’t reflect the noise of bridge accurately, and Z-weighted sound level shall be used to evaluate the acoustic environment near bridges.


Sign in / Sign up

Export Citation Format

Share Document