scholarly journals Heat Transfer Modeling and Optimization of a Carbonized Microvascular Solar Receiver

Author(s):  
Taylor Brown

Concentrating solar power is an emerging renewable energy source. The technology can collect and store thermal energy from the sun over long durations, generating electricity as needed at a later time. Current CSP systems are limited to a maximum operational temperature due to constraints of the working fluid, which limits the maximum possible efficiency of the system. One proposed pathway forward is to utilize a gas phase for the working fluid in the system such as supercritical carbon dioxide. A composite gas phase modular receiver is being developed by researchers at Boise State University and the University of Tulsa. The receiver uses supercritical carbon dioxide as the working fluid, which can operate at temperatures greater than 1000 ˚C. The unique carbon-carbon composite material has high thermal conductivity and is structurally durable at extreme temperatures. A model has been developed in this work to simulate the thermal and hydraulic performance of a composite receiver unit cell. The model is built as a thermal resistance network that solves more quickly than traditional computational fluid dynamics simulations. The thermal and hydraulic models are compared with CFD simulations and show close agreement over a wide range of inlet velocities and path architectures. A genetic algorithm has been developed to optimize the design of the receiver. The algorithm optimizes the fluid channel diameter, inlet velocity, and the path architecture design of a unit cell. The optimization scheme weighs the thermal performance of the receiver with the hydraulic performance, maximizing the thermal efficiency and minimizing the pressure drop. The nominal strain is also calculated and constrained. The algorithm produces an optimal design from a constrained set of architectures. The optimal design is a simple three-channel parallel path with an acceptable pressure drop, less than 17 kPa. The thermal efficiency of the design is 75.6% with a 1,000,000 W/m2 solar flux and the nominal strain is an allowable 0.03%. Future work will be done to expand the path design space and remove arbitrary constraints from the optimization process.

Author(s):  
Jin Young Heo ◽  
Jinsu Kwon ◽  
Jeong Ik Lee

For the concentrating solar power (CSP) applications, the supercritical carbon dioxide (s-CO2) power cycle is beneficial in many aspects, including high cycle efficiencies, reduced component sizing, and potential for the dry cooling option. More research is involved in improving this technology to realize the s-CO2 cycle as a candidate to replace the conventional power conversion systems for CSP applications. In this study, an isothermal compressor, a turbomachine which undergoes the compression process at constant temperature to minimize compression work, is applied to the s-CO2 power cycle layout. To investigate the cycle performance changes of adopting the novel technology, a framework for defining the efficiency of the isothermal compressor is revised and suggested. This study demonstrates how the compression work for the isothermal compressor is reduced, up to 50%, compared to that of the conventional compressor under varying compressor inlet conditions. Furthermore, the simple recuperated and recompression Brayton cycle layouts using s-CO2 as a working fluid are evaluated for the CSP applications. Results show that for compressor inlet temperatures (CIT) near the critical point, the recompression Brayton cycle using an isothermal compressor has 0.2–1.0% point higher cycle thermal efficiency compared to its reference cycle. For higher CIT values, the recompression cycle using an isothermal compressor can perform above 50% in thermal efficiency for a wider range of CIT than the reference cycle. Adopting an isothermal compressor in the s-CO2 layout can imply larger heat exchange area for the compressor which requires further development.


Author(s):  
Alan Kruizenga ◽  
Mark Anderson ◽  
Roma Fatima ◽  
Michael Corradini ◽  
Aaron Towne ◽  
...  

The increasing importance of improving efficiency and reducing capital costs has led to significant work studying advanced Brayton cycles for high temperature energy conversion. Using compact, highly efficient, diffusion-bonded heat exchangers for the recuperators has been a noteworthy improvement in the design of advanced carbon dioxide Brayton cycles. These heat exchangers will operate near the pseudocritical point of carbon dioxide, making use of the drastic variation of the thermophysical properties. This paper focuses on the experimental measurements of heat transfer under cooling conditions, as well as pressure drop characteristics within a prototypic printed circuit heat exchanger. Studies utilize type-316 stainless steel, nine channel, semi-circular test section, and supercritical carbon dioxide serves as the working fluid throughout all experiments. The test section channels have a hydraulic diameter of 1.16 mm and a length of 0.5 m. The mini-channels are fabricated using current chemical etching technology, emulating techniques used in current diffusion-bonded printed circuit heat exchanger manufacturing. Local heat transfer values were determined using measured wall temperatures and heat fluxes over a large set of experimental parameters that varied system pressure, inlet temperature, and mass flux. Experimentally determined heat transfer coefficients and pressure drop data are compared to correlations and earlier data available in literature. Modeling predictions using the computational fluid dynamics (CFD) package FLUENT are included to supplement experimental data. All nine channels were modeled using known inlet conditions and measured wall temperatures as boundary conditions. The CFD results show excellent agreement in total heat removal for the near pseudocritical region, as well as regions where carbon dioxide is a high or low density fluid.


2021 ◽  
Vol 241 ◽  
pp. 114272
Author(s):  
Bowen Li ◽  
Shaozeng Sun ◽  
Linyao Zhang ◽  
Dongdong Feng ◽  
Yijun Zhao ◽  
...  

2020 ◽  
pp. 1-34
Author(s):  
Matthew Carlson ◽  
Francisco Alvarez

Abstract A new generation of Concentrating Solar Power (CSP) technologies is under development to provide dispatchable renewable power generation and reduce the levelized cost of electricity (LCOE) to 6 cents/kWh by leveraging heat transfer fluids (HTF) capable of operation at higher temperatures and coupling with higher efficiency power conversion cycles. The U.S. Department of Energy (DOE) has funded three pathways for Generation 3 CSP (Gen3CSP) technology development to leverage solid, liquid, and gaseous HTFs to transfer heat to a supercritical carbon dioxide (sCO2) Brayton cycle. This paper presents the design and off-design capabilities of a 1 MWth sCO2 test system that can provide sCO2 coolant to the primary heat exchangers (PHX) coupling the high-temperature HTFs to the sCO2 working fluid of the power cycle. This system will demonstrate design, performance, lifetime, and operability at a scale relevant to commercial CSP. A dense-phase high pressure canned motor pump is used to supply up to 5.3 kg/s of sCO2 flow to the primary heat exchanger at pressures up to 250 bar and temperatures up to 715 °C with ambient air as the ultimate heat sink. Key component requirements for this system are presented in this paper.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1031 ◽  
Author(s):  
Lei Chai ◽  
Konstantinos M. Tsamos ◽  
Savvas A. Tassou

This paper investigates the thermohydraulic performance of finned-tube supercritical carbon dioxide (sCO2) gas coolers operating with refrigerant pressures near the critical point. A distributed modelling approach combined with the ε-NTU method has been developed for the simulation of the gas cooler. The heat transfer and pressure drop for each evenly divided segment are calculated using empirical correlations for Nusselt number and friction factor. The model was validated against test results and then used to investigate the influence of design and operating parameters on local and overall gas cooler performance. The results show that the refrigerant heat-transfer coefficient increases with decreasing temperature and reaches its maximum close to the pseudocritical temperature before beginning to decrease. The pressure drop increases along the flow direction with decreasing temperature. Overall performance results illustrate that higher refrigerant mass flow rate and decreasing finned-tube diameter lead to improved heat-transfer rates but also increased pressure drops. Design optimization of gas coolers should take into consideration their impact on overall refrigeration performance and life cycle cost. This is important in the drive to reduce the footprint of components, energy consumption, and environmental impacts of refrigeration and heat-pump systems. The present work provides practical guidance to the design of finned-tube gas coolers and can be used as the basis for the modelling of integrated sCO2 refrigeration and heat-pump systems.


Author(s):  
John J. Dyreby ◽  
Sanford A. Klein ◽  
Gregory F. Nellis ◽  
Douglas T. Reindl

Continuing efforts to increase the efficiency of utility-scale electricity generation has resulted in considerable interest in Brayton cycles operating with supercritical carbon dioxide (S-CO2). One of the advantages of S-CO2 Brayton cycles, compared to the more traditional steam Rankine cycle, is that equal or greater thermal efficiencies can be realized using significantly smaller turbomachinery. Another advantage is that heat rejection is not limited by the saturation temperature of the working fluid, facilitating dry cooling of the cycle (i.e., the use of ambient air as the sole heat rejection medium). While dry cooling is especially advantageous for power generation in arid climates, the reduction in water consumption at any location is of growing interest due to likely tighter environmental regulations being enacted in the future. Daily and seasonal weather variations coupled with electric load variations means the plant will operate away from its design point the majority of the year. Models capable of predicting the off-design and part-load performance of S-CO2 power cycles are necessary for evaluating cycle configurations and turbomachinery designs. This paper presents a flexible modeling methodology capable of predicting the steady state performance of various S-CO2 cycle configurations for both design and off-design ambient conditions, including part-load plant operation. The models assume supercritical CO2 as the working fluid for both a simple recuperated Brayton cycle and a more complex recompression Brayton cycle.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Ricardo Vasquez Padilla ◽  
Yen Chean Soo Too ◽  
Andrew Beath ◽  
Robbie McNaughton ◽  
Wes Stein

Concentrated solar power using supercritical carbon dioxide (S-CO2) Brayton cycles offers advantages of similar or higher overall thermal efficiencies than conventional Rankine cycles using superheated or supercritical steam. The high efficiency and compactness of S-CO2, as compared with steam Rankine cycles operating at the same temperature, make this cycle attractive for solar central receiver applications. In this paper, S-CO2 Brayton cycle is integrated with a solar central receiver that provides heat input to the power cycle. Three configurations were analyzed: simple, recompression (RC), and recompression with main intercooling (MC). The effect of pressure drop in heat exchangers and solar receiver and solar receiver surface temperature on the thermal and exergetic performance of the CO2 Brayton cycle with and without reheat condition was studied. Energy, exergy, and mass balance were carried out for each component and the cycle first law and exergy efficiencies were calculated. In order to obtain optimal operating conditions, optimum pressure ratios were obtained by maximizing the cycle thermal efficiency under different pressure drops and solar receiver temperature conditions. Optimization of the cycle first law efficiency was carried out in python 2.7 by using sequential least squares programing (SLSQP). The results showed that under low pressure drops, adding reheat to the S-CO2 Brayton cycle has a favorable effect on the thermal and exergy efficiencies. Increasing pressure drop reduces the gap between efficiencies for reheat and no reheat configuration, and for pressure drop factors in the solar receiver above 2.5%, reheat has a negligible or detrimental effect on thermal and exergy performance of S-CO2 Brayton cycles. Additionally, the results showed that the overall exergy efficiency has a bell shape, reaching a maximum value between 18.3% and 25.1% at turbine inlet temperatures in the range of 666–827 °C for different configurations. This maximum value is highly dependent on the solar receiver surface temperature, the thermal performance of the solar receiver, and the solar field efficiency. As the solar receiver surface temperature increases, more exergy destruction associated with heat transfer losses to the environment takes place in the solar receiver and therefore the overall exergy efficiency decreases. Recompression with main intercooling (MC) showed the best thermal (ηI,cycle > 47% at Tin,turbine > 700 °C) and exergy performance followed by RC configuration.


Author(s):  
Richard A. Riemke ◽  
Cliff B. Davis ◽  
Richard R. Schultz

Version 2.3 of the RELAP5-3D computer program includes all features and models previously available only in the ATHENA version of the code. These include the addition of new working fluids (i.e., ammonia, blood, carbon dioxide, glycerol, helium, hydrogen, lead-bismuth, lithium, lithium-lead, nitrogen, potassium, sodium, and sodium-potassium) and a magnetohydrodynamic model that expands the capability of the code to model many more thermal-hydraulic systems. In addition to the new working fluids along with the standard working fluid water, one or more noncondensable gases (e.g., air, argon, carbon dioxide, carbon monoxide, helium, hydrogen, krypton, nitrogen, oxygen, sf6, xenon) can be specified as part of the vapor/gas phase of the working fluid. These noncondensable gases were in previous versions of RELAP5-3D. Recently four molten salts have been added as working fluids to RELAP5-3D Version 2.4, which has had limited release. These molten salts will be in RELAP5-3D Version 2.5, which will have a general release like RELAP5-3D Version 2.3. Applications that use these new features and models are discussed in this paper.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Saeb M. Besarati ◽  
D. Yogi Goswami

A number of studies have been performed to assess the potential of using supercritical carbon dioxide (S-CO2) in closed-loop Brayton cycles for power generation. Different configurations have been examined among which recompression and partial cooling configurations have been found very promising, especially for concentrating solar power (CSP) applications. It has been demonstrated that the S-CO2 Brayton cycle using these configurations is capable of achieving more than 50% efficiency at operating conditions that could be achieved in central receiver tower type CSP systems. Although this efficiency is high, it might be further improved by considering an appropriate bottoming cycle utilizing waste heat from the top S-CO2 Brayton cycle. The organic Rankine cycle (ORC) is one alternative proposed for this purpose; however, its performance is substantially affected by the selection of the working fluid. In this paper, a simple S-CO2 Brayton cycle, a recompression S-CO2 Brayton cycle, and a partial cooling S-CO2 Brayton cycle are first simulated and compared with the available data in the literature. Then, an ORC is added to each configuration for utilizing the waste heat. Different working fluids are examined for the bottoming cycles and the operating conditions are optimized. The combined cycle efficiencies and turbine expansion ratios are compared to find the appropriate working fluids for each configuration. It is also shown that combined recompression-ORC cycle achieves higher efficiency compared with other configurations.


Sign in / Sign up

Export Citation Format

Share Document