Experimental assessment of the information content of long-range portraits of radar objects

Author(s):  
V.E. Turov ◽  
A.V. Zyuzin ◽  
A.V. Timoshenko ◽  
V.P. Grutsya

At present, the scientific and technical literature discusses in detail the issues of obtaining information about the geometric characteristics of airborne radar targets (RC), which can be used as recognition signs. However, these issues and the methods being developed are considered in relation to single-position radar stations (radars) using simple or complex signals. Purpose of the work is determination of the informative value of the parameters of the long-range portraits of the RLS obtained by the method of statistical and physical modeling based on the processing of experimental data. A method is proposed for assessing the informativeness of long-range portraits of radar objects obtained as a result of processing reflected signals by various methods, including using weight processing based on a priori information about the structure of probing signals. Based on the analysis of the experimental data, it was found that the weight processing of the long-range portraits of the RLS provides an increase in the contrast of the portraits (an increase in the steepness of the portrait peaks and the depth of the dips), which, in turn, leads to an increase in the information content of each element of the long-range portrait and the totality of the features of the long-range portrait as a whole when recognizing RLO. The use of the technique allows us to assess the quality of the long-range portraits of the radar, obtained by various methods of processing radar signals and develop algorithms that increase the information content of radar systems with the recognition mode both for air and space radar and for objects against the background of the underlying surface during remote sensing.

Author(s):  
S. N. Gusev ◽  
S. V. Zhuravlev ◽  
A. V. Popov

Introduction. The analysis of the current state and prospects of space-based radar surveillance tools is important for determining their functions in global aerospace information systems, which aim to monitor air and space, as well as the Earth's surface. Radar surveillance information is used for the purposes of economic analysis, environmental monitoring, mineral search, emergency monitoring, detection and recognition of specified object s at sea and on land, as well as for ensuring national security. In this regard, it is of relevance to develop methods for preliminary assessment of the resolution capacity of novel high-precision onboard radar systems installed on a spacecraft, considering their main technical characteristics, the parameters of the spacecraft movement and the influence of the atmosphere. A priori estimation of spatial resolution values requires a method for calculating the corresponding indicators meeting the required quality of the synthesized radio holograms.Aim. To derive mathematical dependencies and logical rules allowing a priori estimation of the spatial resolution of radar images obtained by the onboard equipment of a radar complex.Materials and methods. Analytical methods were used to determine the resolution error of onboard radar systems with a synthesized aperture in the lateral (azimuthal) direction and range, as well as the theory of radar signal processing.Results. A comparison of the experimental and analytical data on the resolution capacity of an actual radar system confirmed the validity on the proposed method. The developed methodology was used to determine the procedure of calculating the error when estimating the resolution capacity in terms of azimuth and range. Conclusion. The proposed method can be used for both designing novel radar systems and comparing existing radar complexes, depending on the resolution requirements.


2014 ◽  
Vol 12 (5) ◽  
pp. 594-603 ◽  
Author(s):  
Yaroslava Pushkarova ◽  
Yuriy Kholin

AbstractArtificial neural networks have proven to be a powerful tool for solving classification problems. Some difficulties still need to be overcome for their successful application to chemical data. The use of supervised neural networks implies the initial distribution of patterns between the pre-determined classes, while attribution of objects to the classes may be uncertain. Unsupervised neural networks are free from this problem, but do not always reveal the real structure of data. Classification algorithms which do not require a priori information about the distribution of patterns between the pre-determined classes and provide meaningful results are of special interest. This paper presents an approach based on the combination of Kohonen and probabilistic networks which enables the determination of the number of classes and the reliable classification of objects. This is illustrated for a set of 76 solvents based on nine characteristics. The resulting classification is chemically interpretable. The approach proved to be also applicable in a different field, namely in examining the solubility of C60 fullerene. The solvents belonging to the same group demonstrate similar abilities to dissolve C60. This makes it possible to estimate the solubility of fullerenes in solvents for which there are no experimental data


1991 ◽  
Vol 35 (B) ◽  
pp. 1205-1209
Author(s):  
I. A. Kondurov ◽  
P. A. Sushkov ◽  
T. M. Tjukavina ◽  
G. I. Shulyak

In multielement EDXRF analysis of very complex unknowns, some problems in data evaluation may be simplified if one can take into account a priori information on the properties of the incident and detected radiations, and also available data on the matrix of the sample. The number of variables can be drastically shortened in the LSM procedures in this case. One of the best examples of complex unknowns is the determination of the rare earth element content of ores, and most recently in samples of high temperature superconductors (HiTc).


2010 ◽  
Vol 3 (1) ◽  
pp. 209-232 ◽  
Author(s):  
M. Reuter ◽  
M. Buchwitz ◽  
O. Schneising ◽  
J. Heymann ◽  
H. Bovensmann ◽  
...  

Abstract. An optimal estimation based retrieval scheme for satellite based retrievals of XCO2 (the dry air column averaged mixing ratio of atmospheric CO2) is presented enabling accurate retrievals also in the presence of thin clouds. The proposed method is designed to analyze near-infrared nadir measurements of the SCIAMACHY instrument in the CO2 absorption band at 1580 nm and in the O2-A absorption band at around 760 nm. The algorithm accounts for scattering in an optically thin cirrus cloud layer and at aerosols of a default profile. The scattering information is mainly obtained from the O2-A band and a merged fit windows approach enables the transfer of information between the O2-A and the CO2 band. Via the optimal estimation technique, the algorithm is able to account for a priori information to further constrain the inversion. Test scenarios of simulated SCIAMACHY sun-normalized radiance measurements are analyzed in order to specify the quality of the proposed method. In contrast to existing algorithms for SCIAMACHY retrievals, the systematic errors due to cirrus clouds with optical thicknesses up to 1.0 are reduced to values below 4 ppm for most of the analyzed scenarios. This shows that the proposed method has the potential to reduce uncertainties of SCIAMACHY retrieved XCO2 making this data product potentially useful for surface flux inverse modeling.


Author(s):  
Алексей Курлов ◽  
Aleksey Kurlov ◽  
Андрей Гулевитский ◽  
Andrey Gulevitsky

This article focuses on the decision of problems of increase of efficiency of introduction of innovation in industrial enterprise. The publication includes a description of the author's approach to innovation in the industrial enterprise, implemented in the form of a database. The main functions of the database are divided into two main stages – preparatory and informative. The functions of the preparatory stage include the collection of information about the industrial enterprise, the rationale for the choice of innovation, determination of the composition and administration of training (retraining), justification of the technical appearance of innovation. At the supporting stage, the database allows information support in the development and implementation of innovations in terms of timing, volume and costs, to carry out a priori and a posteriori evaluation of the quality of innovation on the basis of situational norms, as well as support for decision-making on innovation management in the industrial enterprise. The database is based on the theory of system analysis, the basic principles of the theory of innovation, methods of situational modeling, graph theory and probability theory. The results of the developed database can be used by modern industrial enterprises in the implementation of innovations.


2019 ◽  
Vol 1 (7) ◽  
pp. 110-116 ◽  
Author(s):  
A. Yu. Gulevitskij ◽  
A. V. Kurlov ◽  
V. V. Kurlov

This article focuses on the decision of problems of increase of efficiency of introduction of innovation in industrial enterprise. The publication includes a description of the author’s approach to innovation in the industrial enterprise, implemented in the form of a database. The main functions of the database are divided into two main stages – preparatory and informative. The functions of the preparatory stage include the collection of information about the industrial enterprise, the rationale for the choice of innovation, determination of the composition and administration of training (retraining), justification of the technical appearance of innovation. At the supporting stage, the database allows information support in the development and implementation of innovations in terms of timing, volume and costs, to carry out a priori and a posteriori evaluation of the quality of innovation on the basis of situational norms, as well as support for decision-making on innovation management in the industrial enterprise. The database is based on the theory of system analysis, the basic principles of the theory of innovation, methods of situational modeling, graph theory and probability theory. The results of the developed database can be used by modern industrial enterprises in the implementation of innovations.


1984 ◽  
Vol 49 (5) ◽  
pp. 1240-1246
Author(s):  
Tomáš Boublík

Ternary equilibrium diagrams in the n-hexane-cyclohexane-benzene system at temperature 298.15 K and n-hexane-benzene-toluene system at pressure 101.325 kPa were determined from the BACK equation of state. In the course of the determination of excess thermodynamic functions of mixtures the values of the BACK equation parameters for pure compounds and binary interactions parameters, ki,j, adjusted to GE and HE of the corresponding binaries were employed. The comparison of theoretical and experimental data shows very good quality of the prediction of the equilibrium behaviour of polycomponent systems from the BACK equation of state.


2018 ◽  
Vol 226 ◽  
pp. 04045 ◽  
Author(s):  
Dmitriy A. Bezuglov ◽  
Viacheslav V. Voronin ◽  
Vladimir A. Krutov

Analytical equations of a new spline approximation method for filtering impulse noise in images are obtained. The proposed method differs from the known ones: when filtering images, one-dimensional sequential spline functions are used for direct and inverse transformations, and the processing is performed in rows and columns. In this work, experimental studies based on computer simulation using special test images on the background of impulse noise were conducted. Experimental studies have shown the operability and high efficiency of the developed method, which allow to improve the quality of image filtering by up to 10 dB. In this case, the properties of spline functions make it possible to abandon the use of various masks, that is, to abandon inefficient linear methods of image filtering. The method can be used to create digital image processing systems in the industry, to create autonomous robots, under observation conditions that complicate the registration process, and in the absence of a priori information about the form of background noise.


Author(s):  
J.C.H. Spence

The determination of atomic co-ordinates from HREM images has greatly improved our understanding of semiconductor defects, but chemical and electronic structure information are also needed. Thus suitable HREM compatible techniques must be developed and this article reviews some of these.The intimate relationship between resolution and noise has been exploited for many years in biological HREM. Since the centre of a very broad gaussion peak can be found with an accuracy which depends mainly on noise, heavy atom positions in inorganic crystals can be determined from HREM images with an accuracy of ±0.1Å (well beyond the information and point resolution limits of an HREM image) by the addition of similar unit cell images. This method makes extensive use of a-priori information (that there is only one atomic column rather than an unresolved pair, other atom co-ordinates, symmetry) and fails for isolated defects, but may be useful for semiconductor interfaces and surfaces.


Sign in / Sign up

Export Citation Format

Share Document