Laser generation on weak modes in graphene structure with asymmetric unit cell

2021 ◽  
Author(s):  
K.V. Mashinsky ◽  
V.V. Popov ◽  
D.V. Fateev

Problem formulating. Lasing on strong («radiative») plasmon resonance mode in graphene structure with dual grating gate with asymmetric unit cell requires strong gain. It is possible to achieve lasing in a weak ("non-radiative") mode at a lower gain rate. Goal. Theoretical study of laser generation on weak plasmonic resonance mode in single layer graphene structure screened by dual grating gate with asymmetric unit cell. Result. Laser generation on weak plasmonic resonance mode in single layer graphene structure screened by dual grating gate with asymmetric unit cell is reached. Excitation of a weak plasmon resonance mode requires less gain than excitation of a radiative one. Practical meaning. Results can be used to create sources of terahertz waves.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Jungkyu Park ◽  
Vikas Prakash

In the present study, reverse nonequilibrium molecular dynamics is employed to study thermal resistance across interfaces comprising dimensionally mismatched junctions of single layer graphene floors with (6,6) single-walled carbon nanotube (SWCNT) pillars in 3D carbon nanomaterials. Results obtained from unit cell analysis indicate the presence of notable interfacial thermal resistance in the out-of-plane direction (along the longitudinal axis of the SWCNTs) but negligible resistance in the in-plane direction along the graphene floor. The interfacial thermal resistance in the out-of-plane direction is understood to be due to the change in dimensionality as well as phonon spectra mismatch as the phonons propagate from SWCNTs to the graphene sheet and then back again to the SWCNTs. The thermal conductivity of the unit cells was observed to increase nearly linearly with an increase in cell size, that is, pillar height as well as interpillar distance, and approaches a plateau as the pillar height and the interpillar distance approach the critical lengths for ballistic thermal transport in SWCNT and single layer graphene. The results indicate that the thermal transport characteristics of these SWCNT-graphene hybrid structures can be tuned by controlling the SWCNT-graphene junction characteristics as well as the unit cell dimensions.


2019 ◽  
Vol 33 (31) ◽  
pp. 1950384
Author(s):  
Di Lu ◽  
Yu-E Yang ◽  
Weichun Zhang ◽  
Caixia Wang ◽  
Jining Fang ◽  
...  

We have investigated Raman spectra of the G and 2D lines of a single-layer graphene (SLG) with metallic contacts. The shift of the G and 2D lines is correlated to two different factors. Before performing annealing treatment or annealing under low temperature, the electron transfer on graphene surface is dominated by nonuniform strain effect. As the annealing treatment is enhanced, however, a suitable annealing treatment can eliminate the nonuniform strain effect where the relative work function (WF) between graphene and metal becomes a main factor to determine electronic transfer. Moreover, it is confirmed that the optimized annealing treatment can also decrease effectively the structural defect and induced disorder in graphene due to metallic contacts.


2021 ◽  
Vol 7 (9) ◽  
pp. eabf0116
Author(s):  
Shiqi Huang ◽  
Shaoxian Li ◽  
Luis Francisco Villalobos ◽  
Mostapha Dakhchoune ◽  
Marina Micari ◽  
...  

Etching single-layer graphene to incorporate a high pore density with sub-angstrom precision in molecular differentiation is critical to realize the promising high-flux separation of similar-sized gas molecules, e.g., CO2 from N2. However, rapid etching kinetics needed to achieve the high pore density is challenging to control for such precision. Here, we report a millisecond carbon gasification chemistry incorporating high density (>1012 cm−2) of functional oxygen clusters that then evolve in CO2-sieving vacancy defects under controlled and predictable gasification conditions. A statistical distribution of nanopore lattice isomers is observed, in good agreement with the theoretical solution to the isomer cataloging problem. The gasification technique is scalable, and a centimeter-scale membrane is demonstrated. Last, molecular cutoff could be adjusted by 0.1 Å by in situ expansion of the vacancy defects in an O2 atmosphere. Large CO2 and O2 permeances (>10,000 and 1000 GPU, respectively) are demonstrated accompanying attractive CO2/N2 and O2/N2 selectivities.


2021 ◽  
Vol 18 (3) ◽  
pp. 316-320 ◽  
Author(s):  
Heejin Lim ◽  
Sun Young Lee ◽  
Yereum Park ◽  
Hyeonggyu Jin ◽  
Daeha Seo ◽  
...  

2019 ◽  
Vol 2 (5) ◽  
pp. 3665-3675 ◽  
Author(s):  
Mohammad Qorbani ◽  
Ali Esfandiar ◽  
Hamid Mehdipour ◽  
Marc Chaigneau ◽  
Azam Irajizad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document