scholarly journals Type II General Exponential Class of Distributions

Author(s):  
G. G. Hamedani ◽  
Mahdi Rasekhi ◽  
Sayed Najibi ◽  
Haitham M. Yousof ◽  
Morad Alizadeh

In this paper, a new class of continuous distributions with two extra positive parameters is introduced and is called the Type II General Exponential (TIIGE) distribution. Some special models are presented. Asymptotics, explicit expressions for the ordinary and incomplete moments, moment residual life, reversed residual life, quantile and generating functions and stress-strengh reliability function are derived. Characterizations of this family are obtained based on truncated moments, hazard function, conditional expectation of certain functions of the random variable are obtained. The performance of the maximum likelihood estimators in terms of biases, mean squared errors and confidence interval length is examined by means of a simulation study. Two real data sets are used to illustrate the application of the proposed class.

2017 ◽  
Vol 40 (1) ◽  
pp. 1-27 ◽  
Author(s):  
Mirza Naveed Shahzad ◽  
Faton Merovci ◽  
Zahid Asghar

The Singh-Maddala distribution is very popular to analyze the data on income, expenditure, actuarial, environmental, and reliability related studies. To enhance its scope and application, we propose four parameters transmutedSingh-Maddala distribution, in this study. The proposed distribution is relatively more flexible than the parent distribution to model a variety of data sets. Its basic statistical properties, reliability function, and behaviors of the hazard function are derived. The hazard function showed the decreasing and an upside-down bathtub shape that is required in various survival analysis. The order statistics and generalized TL-moments with their special cases such as L-, TL-, LL-, and LH-moments are also explored. Furthermore, the maximum likelihood estimation is used to estimate the unknown parameters of the transmuted Singh-Maddala distribution. The real data sets are considered to illustrate the utility and potential of the proposed model. The results indicate that the transmuted Singh-Maddala distribution models the datasets better than its parent distribution.


2019 ◽  
Vol 15 (1) ◽  
pp. 1-24 ◽  
Author(s):  
Hesham Mohamed Reyad ◽  
Morad Alizadeh ◽  
Farrukh Jamal ◽  
Soha Othman ◽  
G G Hamedani

In this paper, we propose a new class of continuous distributions called the exponentiated generalized Topp Leone-G family that extends the Topp Leone-G family introduced by Al-Shomrani et al. (2016). We derive explicit expressions for certain mathematical properties of the new family such as; ordinary and incomplete moments, generating functions, reliability analysis, Lorenz and Bonferroni curves, Rényi entropy, stress strength model, moment of residual and reversed residual life, order statistics and extreme values. We discuss the maximum likelihood estimates and the observed information matrix for the model parameters. Two real data sets are used to illustrate the flexibility of the new family.


2020 ◽  
pp. 3059-3071
Author(s):  
Saad Adnan Zain

In this paper, we proposed a new class of Weighted Rayleigh Distribution based on two parameters, one is scale parameter and the other is shape parameter which introduced in Rayleigh distribution. The main properties of this class are derived and investigated in . The moment method and maximum likelihood method are used to obtain estimators of parameters, survival function and hazard function. Real data sets are collected to investigate two methods which depend it in this study. A comparison was made between two methods of estimation.


Author(s):  
Thatayaone Moakofi ◽  
Broderick Oluyede ◽  
Fastel Chipepa

This paper aims to develop a new class of distributions, namely, type II exponentiated half-logistic Topp-Leone power series (TIIEHL-TL-GPS) class of distributions. Some important properties including moments, quantiles, moment generating function, entropy and maximum likelihood estimates are derived. A simulation is conducted study to evaluate the consistency of the maximum likelihood estimates. We also present three real data examples to illustrate the usefulness of the new class of distributions. Results shows that the proposed model performs better than nested and several non-nested models on selected data sets


2020 ◽  
Vol 70 (4) ◽  
pp. 953-978
Author(s):  
Mustafa Ç. Korkmaz ◽  
G. G. Hamedani

AbstractThis paper proposes a new extended Lindley distribution, which has a more flexible density and hazard rate shapes than the Lindley and Power Lindley distributions, based on the mixture distribution structure in order to model with new distribution characteristics real data phenomena. Its some distributional properties such as the shapes, moments, quantile function, Bonferonni and Lorenz curves, mean deviations and order statistics have been obtained. Characterizations based on two truncated moments, conditional expectation as well as in terms of the hazard function are presented. Different estimation procedures have been employed to estimate the unknown parameters and their performances are compared via Monte Carlo simulations. The flexibility and importance of the proposed model are illustrated by two real data sets.


2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Mahendran Shitan ◽  
Shelton Peiris

Spatial modelling has its applications in many fields like geology, agriculture, meteorology, geography, and so forth. In time series a class of models known as Generalised Autoregressive (GAR) has been introduced by Peiris (2003) that includes an index parameterδ. It has been shown that the inclusion of this additional parameter aids in modelling and forecasting many real data sets. This paper studies the properties of a new class of spatial autoregressive process of order 1 with an index. We will call this aGeneralised Separable Spatial Autoregressive(GENSSAR) Model. The spectral density function (SDF), the autocovariance function (ACVF), and the autocorrelation function (ACF) are derived. The theoretical ACF and SDF plots are presented as three-dimensional figures.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Suleman Nasiru

The need to develop generalizations of existing statistical distributions to make them more flexible in modeling real data sets is vital in parametric statistical modeling and inference. Thus, this study develops a new class of distributions called the extended odd Fréchet family of distributions for modifying existing standard distributions. Two special models named the extended odd Fréchet Nadarajah-Haghighi and extended odd Fréchet Weibull distributions are proposed using the developed family. The densities and the hazard rate functions of the two special distributions exhibit different kinds of monotonic and nonmonotonic shapes. The maximum likelihood method is used to develop estimators for the parameters of the new class of distributions. The application of the special distributions is illustrated by means of a real data set. The results revealed that the special distributions developed from the new family can provide reasonable parametric fit to the given data set compared to other existing distributions.


2017 ◽  
Vol 6 (5) ◽  
pp. 65 ◽  
Author(s):  
Amal S. Hassan ◽  
Saeed E. Hemeda ◽  
Sudhansu S. Maiti ◽  
Sukanta Pramanik

In this paper, we present a new family, depending on additive Weibull random variable as a generator, called the generalized additive Weibull generated-family (GAW-G) of distributions with two extra parameters. The proposed family involves several of the most famous classical distributions as well as the new generalized Weibull-G family which already accomplished by Cordeiro et al. (2015). Four special models are displayed. The expressions for the incomplete and ordinary moments, quantile, order statistics, mean deviations, Lorenz and Benferroni curves are derived. Maximum likelihood method of estimation is employed to obtain the parameter estimates of the family. The simulation study of the new models is conducted. The efficiency and importance of the new generated family is examined through real data sets.


2017 ◽  
Vol 46 (1) ◽  
pp. 41-63 ◽  
Author(s):  
M.E. Mead ◽  
Ahmed Z. Afify ◽  
G.G. Hamedani ◽  
Indranil Ghosh

We define and study a new generalization of the Fréchet distribution called the beta exponential Fréchet distribution. The new model includes thirty two special models. Some of its mathematical properties, including explicit expressions for the ordinary and incomplete moments, quantile and generating functions, mean residual life, mean inactivity time, order statistics and entropies are derived. The method of maximum likelihood is proposed to estimate the model parameters. A small simulation study is alsoreported. Two real data sets are applied to illustrate the flexibility of the proposed model compared with some nested and non-nested models.


2017 ◽  
Vol 32 (1) ◽  
Author(s):  
Mustafa Ç. Korkmaz ◽  
Haitham M. Yousof

AbstractIn this article, an exponential model with only one shape parameter, which can be used in modeling survival data, reliability problems and fatigue life studies, is studied. We derive explicit expressions for some of its statistical and mathematical quantities including the ordinary moments, generating function, incomplete moments, order statistics, moment of residual life and reversed residual life. The model parameter is estimated by using the maximum likelihood method. A real data application is given to illustrate the flexibility of the model. We assess the performance of the maximum likelihood estimators in terms of biases and mean squared errors by means of a simulation study.


Sign in / Sign up

Export Citation Format

Share Document