scholarly journals Estimation Methods of Alpha Power Exponential Distribution with Applications to Engineering and Medical Data

Author(s):  
Mazen Nassar ◽  
Ahmed Z. Afify ◽  
Mohammed Shakhatreh

This paper addresses the estimation of the unknown parameters of the alphapower exponential distribution (Mahdavi and Kundu, 2017) using nine frequentist estimation methods. We discuss the nite sample properties of the parameterestimates of the alpha power exponential distribution via Monte Carlo simulations. The potentiality of the distribution is analyzed by means of two real datasets from the elds of engineering and medicine. Finally, we use the maximumlikelihood method to derive the estimates of the distribution parameters undercompeting risks data and analyze one real data set.

Author(s):  
Parisa Torkaman

The generalized inverted exponential distribution is introduced as a lifetime model with good statistical properties. This paper, the estimation of the probability density function and the cumulative distribution function of with five different estimation methods: uniformly minimum variance unbiased(UMVU), maximum likelihood(ML), least squares(LS), weighted least squares (WLS) and percentile(PC) estimators are considered. The performance of these estimation procedures, based on the mean squared error (MSE) by numerical simulations are compared. Simulation studies express that the UMVU estimator performs better than others and when the sample size is large enough the ML and UMVU estimators are almost equivalent and efficient than LS, WLS and PC. Finally, the result using a real data set are analyzed.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 726
Author(s):  
Lamya A. Baharith ◽  
Wedad H. Aljuhani

This article presents a new method for generating distributions. This method combines two techniques—the transformed—transformer and alpha power transformation approaches—allowing for tremendous flexibility in the resulting distributions. The new approach is applied to introduce the alpha power Weibull—exponential distribution. The density of this distribution can take asymmetric and near-symmetric shapes. Various asymmetric shapes, such as decreasing, increasing, L-shaped, near-symmetrical, and right-skewed shapes, are observed for the related failure rate function, making it more tractable for many modeling applications. Some significant mathematical features of the suggested distribution are determined. Estimates of the unknown parameters of the proposed distribution are obtained using the maximum likelihood method. Furthermore, some numerical studies were carried out, in order to evaluate the estimation performance. Three practical datasets are considered to analyze the usefulness and flexibility of the introduced distribution. The proposed alpha power Weibull–exponential distribution can outperform other well-known distributions, showing its great adaptability in the context of real data analysis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244316
Author(s):  
Mukhtar M. Salah ◽  
Essam A. Ahmed ◽  
Ziyad A. Alhussain ◽  
Hanan Haj Ahmed ◽  
M. El-Morshedy ◽  
...  

This paper describes a method for computing estimates for the location parameter μ > 0 and scale parameter λ > 0 with fixed shape parameter α of the alpha power exponential distribution (APED) under type-II hybrid censored (T-IIHC) samples. We compute the maximum likelihood estimations (MLEs) of (μ, λ) by applying the Newton-Raphson method (NRM) and expectation maximization algorithm (EMA). In addition, the estimate hazard functions and reliability are evaluated by applying the invariance property of MLEs. We calculate the Fisher information matrix (FIM) by applying the missing information rule, which is important in finding the asymptotic confidence interval. Finally, the different proposed estimation methods are compared in simulation studies. A simulation example and real data example are analyzed to illustrate our estimation methods.


2020 ◽  
Vol 9 (1) ◽  
pp. 47-60
Author(s):  
Samir K. Ashour ◽  
Ahmed A. El-Sheikh ◽  
Ahmed Elshahhat

In this paper, the Bayesian and non-Bayesian estimation of a two-parameter Weibull lifetime model in presence of progressive first-failure censored data with binomial random removals are considered. Based on the s-normal approximation to the asymptotic distribution of maximum likelihood estimators, two-sided approximate confidence intervals for the unknown parameters are constructed. Using gamma conjugate priors, several Bayes estimates and associated credible intervals are obtained relative to the squared error loss function. Proposed estimators cannot be expressed in closed forms and can be evaluated numerically by some suitable iterative procedure. A Bayesian approach is developed using Markov chain Monte Carlo techniques to generate samples from the posterior distributions and in turn computing the Bayes estimates and associated credible intervals. To analyze the performance of the proposed estimators, a Monte Carlo simulation study is conducted. Finally, a real data set is discussed for illustration purposes.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Mohammed Obeidat ◽  
Amjad Al-Nasser ◽  
Amer I. Al-Omari

This paper studies estimation of the parameters of the generalized Gompertz distribution based on ranked-set sample (RSS). Maximum likelihood (ML) and Bayesian approaches are considered. Approximate confidence intervals for the unknown parameters are constructed using both the normal approximation to the asymptotic distribution of the ML estimators and bootstrapping methods. Bayes estimates and credible intervals of the unknown parameters are obtained using differential evolution Markov chain Monte Carlo and Lindley’s methods. The proposed methods are compared via Monte Carlo simulations studies and an example employing real data. The performance of both ML and Bayes estimates is improved under RSS compared with simple random sample (SRS) regardless of the sample size. Bayes estimates outperform the ML estimates for small samples, while it is the other way around for moderate and large samples.


Author(s):  
Arun Kumar Chaudhary ◽  
Vijay Kumar

In this study, we have introduced a three-parameter probabilistic model established from type I half logistic-Generating family called half logistic modified exponential distribution. The mathematical and statistical properties of this distribution are also explored. The behavior of probability density, hazard rate, and quantile functions are investigated. The model parameters are estimated using the three well known estimation methods namely maximum likelihood estimation (MLE), least-square estimation (LSE) and Cramer-Von-Mises estimation (CVME) methods. Further, we have taken a real data set and verified that the presented model is quite useful and more flexible for dealing with a real data set. KEYWORDS— Half-logistic distribution, Estimation, CVME ,LSE, , MLE


2021 ◽  
Vol 50 (1) ◽  
pp. 24-40
Author(s):  
Aakriti Pandey ◽  
Arun Kaushik ◽  
Sanjay K. Singh ◽  
Umesh Singh

In this article, we considered the statistical inference for the unknown parameters of exponentiated exponential distribution based on a generalized progressive hybrid censored sample under classical paradigm. We have obtained maximum likelihood estimators of the unknown parameters and confidence intervals utilizing asymptotic theory. Entropy measures, such as Shannon entropy and Awad sub-entropy, have been obtained to measure loss of information owing to censoring. Further, the expected total time of the test and expected number of failures, which are useful during the execution of an experiment, also have been computed. The performance of the estimators have been discussed based on mean squared errors. Moreover, the effect of choice of parameters, termination time T, and m on the ETTT and ETNFs also have been observed. For illustrating the proposed methodology, a real data set is considered.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Ehab M. Almetwally ◽  
Mohamed A. H. Sabry ◽  
Randa Alharbi ◽  
Dalia Alnagar ◽  
Sh. A. M. Mubarak ◽  
...  

This paper introduces the new novel four-parameter Weibull distribution named as the Marshall–Olkin alpha power Weibull (MOAPW) distribution. Some statistical properties of the distribution are examined. Based on Type-I censored and Type-II censored samples, maximum likelihood estimation (MLE), maximum product spacing (MPS), and Bayesian estimation for the MOAPW distribution parameters are discussed. Numerical analysis using real data sets and Monte Carlo simulation are accomplished to compare various estimation methods. This novel model’s supremacy upon some famous distributions is explained using two real data sets and it is shown that the MOAPW model can achieve better fits than other competitive distributions.


Author(s):  
Hisham Mohamed Almongy ◽  
Ehab Mohamed Almetwally ◽  
Amaal Elsayed Mubarak

In this paper, we introduce and study a new extension of Lomax distribution with four-parameter named as the Marshall–Olkin alpha power Lomax (MOAPL) distribution. Some statistical properties of this distribution are discussed. Maximum likelihood estimation (MLE), maximum product spacing (MPS) and least Square (LS) method for the MOAPL distribution parameters are discussed. A numerical study using real data analysis and Monte-Carlo simulation are performed to compare between different methods of estimation. Superiority of the new model over some well-known distributions are illustrated by physics and economics real data sets. The MOAPL model can produce better fits than some well-known distributions as Marshall–Olkin Lomax, alpha power Lomax, Lomax distribution, Marshall–Olkin alpha power exponential, Kumaraswamy-generalized Lomax, exponentiated  Lomax  and power Lomax.


2020 ◽  
Vol 53 (2) ◽  
pp. 147-163
Author(s):  
RAKHI MOHAN ◽  
MANOJ CHACKO

In this paper, estimation of parameters of Kumaraswamy-exponential distribution with shape parameters α and β is considered based on a progressively type-II censored sample with binomial removals. Together with the unknown parameters, the removal probability p is also estimated. Bayes estimators are obtained using different loss functions such as squared error, LINEX loss function and entropy loss function. All Bayesian estimates are compared with the corresponding maximum likelihood estimates numerically in terms of their bias and mean square error values and found that Bayes estimators perform better than MLE’s for β and p and MLEs perform better than Bayes estimators for α. A real data set is also used for illustration.


Sign in / Sign up

Export Citation Format

Share Document