Failure analysis of fillet welds with premature corrosion in 316L stainless steel slide gates using constitution diagrams

2020 ◽  
Vol 19 (2) ◽  
pp. 141-148
Author(s):  
Carlos Mauricio Franco-Rendón ◽  
Henry León-Henao ◽  
Álvaro Diego Bedoya-Zapata ◽  
Juan Felipe Santa ◽  
Jorge Enrique Giraldo B.

The service environment of the slide gates may cause localized corrosion at welds. In this work, a failure analysis was conducted to determine the causes of the prematurecorrosion of the fillet welds before the commissioning. According to the contractor, the slide gates were manufactured in ASTM A240 Type 316L stainless steel and welded with GMAW using an ER316LSi filler metal. Test samples of the fillet weld metals were extracted from gates after a preliminary visual inspection. The samples were analyzed using ferrite number measurements, Optical Emission Spectrometry, chemical analysis, metallographic examination and Scanning Electron Microscopy with microanalysis. The analysis of results using the Schaeffler and WRC-92 constitution diagrams showed that the estimatedchemical composition of the filler metal differs with the filler metal specified in the WPS suggesting that an incorrect carbon steel filler metal was used during the construction of the gates


2019 ◽  
Vol 63 (2) ◽  
pp. 323-336 ◽  
Author(s):  
Yueqing Xia ◽  
Honggang Dong ◽  
Xiaohu Hao ◽  
Shuai Li ◽  
Peng Li ◽  
...  


CORROSION ◽  
10.5006/3779 ◽  
2021 ◽  
Author(s):  
Yoon Hwa ◽  
Christopher Kumai ◽  
Nancy Yang ◽  
Joshua Yee ◽  
Thomas Devine

The localized corrosion of laser surface melted (LSM) 316L stainless steel is investigated by a combination of potentiodynamic anodic polarization in 0.1M HCl and microscopic investigation of the initiation and propagation of localized corrosion. The pitting potential of LSM 316L is significantly lower than the pitting potential of wrought 316L. The LSM microstructure is highly banded as a consequence of the high laser power density and high linear energy density. The bands are composed of zones of changing modes of solidification, cycling between very narrow regions of primary austenite solidification and very wide regions of primary ferrite solidification. Pits initiate in the outer edge of each band where the mode of solidification is primary austenite plane front solidification and primary austenite cellular solidification. The primary austenite regions have low chromium concentration (and possibly low molybdenum concentration), which explains their susceptibility to pitting corrosion. The ferrite is enriched in chromium, which explains the absence of pitting in the primary ferrite regions. The presence of the low chromium regions of primary austenite solidification explains the lower pitting resistance of LSM 316L relative to wrought 316L. The influence of banding on localized corrosion is applicable to other rapidly solidified processes such as additive manufacturing.



2020 ◽  
Vol 82 (5) ◽  
pp. 940-953
Author(s):  
S. Arkan-Ozdemir ◽  
N. Cansever ◽  
E. Ilhan-Sungur

Abstract Ag-Cu ions in cooling water may inhibit the activity of sulfate-reducing bacteria and therefore provide solutions to microbiologically induced corrosion (MIC) problems, mainly caused by Desulfovibrio sp. To investigate this, the MIC behavior of Desulfovibrio sp. on 316L stainless steel in terms of growth and extracellular polymeric substances (EPS) production was investigated in the presence of Ag-Cu ions. Laboratory-scale systems were set up with final concentrations of 0.13 ppm Ag and 0.3 ppm Cu ions, as they are the frequently used doses for cooling waters, and operated over 720 hours. The corrosion rate was evaluated by gravimetric assay, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analyses. The growth of Desulfovibrio sp. was assessed by bacterial counting and EPS production. Ag-Cu ions in the biofilm were assessed by inductively coupled plasma - optical emission spectrometry (ICP-OES) and EDS-elemental mapping analyses. It was concluded that the ion concentrations used caused an increase in EPS production, especially of protein. The corrosion rate of the metal by Desulfovibrio sp. in the presence of ions was detected as being 29 times higher than that in the sterile medium with the ions after 720 hours. The results suggested that Desulfovibrio sp. exhibited more corrosive behavior in the presence of non-toxic concentrations of Ag-Cu ions.



2014 ◽  
Vol 42 ◽  
pp. 38-44 ◽  
Author(s):  
Robert S. Sellers ◽  
Mark H. Anderson ◽  
Kumar Sridharan ◽  
Todd R. Allen


2015 ◽  
Vol 819 ◽  
pp. 57-62 ◽  
Author(s):  
M.F. Mamat ◽  
E. Hamzah ◽  
Z. Ibrahim ◽  
A.M. Rohah ◽  
A. Bahador

In this paper, dissimilar joining of 316L stainless steel to low carbon steel was carried out using gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW). Samples were welded using AWS: ER309L welding electrode for GMAW and AWS: ER316L welding electrode for GTAW process. Determination of mechanical properties and material characterization on the welded joints were carried out using the Instron tensile test machine and an optical microscope respectively. The cross section area of the welded joint consists of three main areas namely the base metal (BM), heat affected zone (HAZ), and weld metal (WM). It was found that, the yield and tensile strengths of welded samples using ER316L filler metal were slightly higher than the welded sample using ER309L welding electrode. All welded samples fractured at low carbon steel base metal indicating that the regions of ER316L stainless steel base metal, ER316L filler metal and heat affected zone (HAZ) have a higher strength than low carbon steel base metal. It was also found that ER316L welding electrode was the best filler to be used for welding two dissimilar metals between carbon and stainless steel.



2015 ◽  
Vol 638 ◽  
pp. 310-315
Author(s):  
George Coman ◽  
Sorin Ciuca ◽  
Mirela Sohaciu ◽  
Ecaterina Matei ◽  
Andra Predescu ◽  
...  

The paper presents the investigations made on samples taken from the related rotor blade of an hospital cooling equipment.The failure analysis was made in order to find if the failure appear because the metallic material used or was functional problem.The objectives of our analysis and techniques used are described below:determining the chemical composition by optical emission spectrometry;determining the hardness of the material;metallographic analysis by optical microscopy;micro compositional and microstructural analysis by scanning electron microscopy (SEM) and by microanalysis, energy dispersive X-ray (EDAX). Research has highlighted the quality of piece elaboration and casting, which led to a long life of its use.



Sign in / Sign up

Export Citation Format

Share Document