scholarly journals Development and Application of a Novel Green Water-Based Drilling Fluid

2021 ◽  
Vol 8 (1) ◽  
pp. 61-64
Author(s):  
Hongjiang Li

In response to the technical and environmental protection requirements of water-based drilling fluids, this study independently developed a series of green supporting treatment agents for water-based drilling fluids such as the green loss reducer HB-1, green inhibitor HB-2, and green lubricant HB-3, etc., and proposed a green water-based drilling fluid system (HBDF) with good comprehensive performance. The proposed system has a heat resistance of 150°C, a HTHP (high temperature and high pressure) filtrate loss of 12 mL, a biological toxicity EC50 value greater than 105 mg/L, and a biodegradability BOD5/CODCr value of 16.2%. Now the developed HBDF system has been applied in more than 10 wells in SL oilfield, and the field application results show that the proposed HBDF system has stable rheological and filtrate loss performance, good anti-pollution ability, and easy and simple maintenance operations; after drilling, the biological toxicity of the drilling fluids can meet the environmental protection requirements, which has provided a technical reference for the research of green drilling fluids and the green development of SL Oilfield.

Author(s):  
Chinedum Peter Ezeakacha ◽  
Saeed Salehi ◽  
Raj Kiran

Water-based drilling mud is one of the commonly used fluid systems for drilling operations. The loss of drilling fluid in porous media and fractured formations have been one of the industry’s focus in the past decades. However, the dynamics and constantly changing wellbore conditions push the boundaries for more research into accurate quantification and mitigation methods for fluid loss. In the design and development of drilling fluids, most test conditions are kept constant during fluids property testing. Drilling fluid loss and rheological parameters are determined experimentally at constant test conditions, and according to the combination of mud additives, rather than a comprehensive approach. In addition, conventional methods of quantifying drilling fluid loss properties for field application can be is time-consuming, considering that multiple factors impact fluid loss. This study presents a statistical engineering approach for pore-scale characterization of water-based mud (WBM) invasion. The methods used in this research are: special case of factorial design of experiment (DoE), analysis of variance (ANOVA), and regression. Important field parameters based on previous studies and industry recommendations were carefully integrated in the DoE and result analyses. These parameters include but not limited to: porous media type, temperature, type of lost circulation material (LCM), concentration of LCM, drilling string rotary speed, and eccentricity. Ceramic filter tubes were used for the first set of experiments and Upper Grey sandstone rock samples were used for the second set of experiments. The statistical analyses performed in this study were based on a 95% confidence interval (CI). The results show that for single factor interpretation, increase in temperature and rotary speed increased dynamic fluid invasion significantly. Increase in LCM concentration resulted to a significant decrease in fluid invasion. LCM concentration and rotary speed interaction revealed a significant decrease in fluid invasion. LCM concentration and temperature interaction significantly increased fluid invasion. Rotary speed and temperature interaction also increased fluid invasion significantly. The three-factor interaction effect of LCM concentration, rotary speed, and temperature was not significant in reducing fluid invasion. For the conditions used in this study, the regression analysis showed that dynamic fluid invasion in Upper Grey sandstone can be explained from variation in LCM concentration and rotary speed. The results and methods from this study can provide reliable information for drilling fluids design and selecting operating conditions for field application.


2021 ◽  
Author(s):  
Jan David Ytrehus ◽  
Bjørnar Lund ◽  
Ali Taghipour ◽  
Arild Saasen

Abstract Deviated well sections are common in modern well construction. In mature areas like the North Sea region, practically all producers or injector wells will have highly deviated sections. These wells must be drilled and completed in an optimal manner with respect to drill time, cost, risk and functionality. Most cuttings transport and hydraulic models are developed based on tests with model fluids and often in small diameter test sections. Hole cleaning properties and hydraulic behaviour of field fluids differ from those of most model fluids. Furthermore, results from small diameter tests may not always be relevant for, nor scalable to, field applications due to time, length and other scale differences. Hence, there is a need for studies in controlled laboratory environments with various field application designed drilling fluids to improve engineering models and practices. This paper presents results from laboratory tests using field applied fluids. The drilling fluids have similar density and viscosity within the relevant shear rate range applied during drilling operations and in the tests. One of the fluids is oil-based and the other one is an inhibitive water-based drilling fluid.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1644
Author(s):  
Camilo Pedrosa ◽  
Arild Saasen ◽  
Bjørnar Lund ◽  
Jan David Ytrehus

The cuttings transport efficiency of various drilling fluids has been studied in several approaches. This is an important aspect, since hole cleaning is often a bottleneck in well construction. The studies so far have targeted the drilling fluid cuttings’ transport capability through experiments, simulations or field data. Observed differences in the efficiency due to changes in the drilling fluid properties and compositions have been reported but not always fully understood. In this study, the cuttings bed, wetted with a single drilling fluid, was evaluated. The experiments were performed with parallel plates in an Anton Paar Physica 301 rheometer. The results showed systematic differences in the internal friction behaviors between tests of beds with oil-based and beds with water-based fluids. The observations indicated that cutting beds wetted with a polymeric water-based fluid released clusters of particles when external forces overcame the bonding forces and the beds started to break up. Similarly, it was observed that an oil-based fluid wetted bed allowed particles to break free as single particles. These findings may explain the observed differences in previous cutting transport studies.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Arild Saasen

Controlling the annular frictional pressure losses is important in order to drill safely with overpressure without fracturing the formation. To predict these pressure losses, however, is not straightforward. First of all, the pressure losses depend on the annulus eccentricity. Moving the drillstring to the wall generates a wider flow channel in part of the annulus which reduces the frictional pressure losses significantly. The drillstring motion itself also affects the pressure loss significantly. The drillstring rotation, even for fairly small rotation rates, creates unstable flow and sometimes turbulence in the annulus even without axial flow. Transversal motion of the drillstring creates vortices that destabilize the flow. Consequently, the annular frictional pressure loss is increased even though the drilling fluid becomes thinner because of added shear rate. Naturally, the rheological properties of the drilling fluid play an important role. These rheological properties include more properties than the viscosity as measured by API procedures. It is impossible to use the same frictional pressure loss model for water based and oil based drilling fluids even if their viscosity profile is equal because of the different ways these fluids build viscosity. Water based drilling fluids are normally constructed as a polymer solution while the oil based are combinations of emulsions and dispersions. Furthermore, within both water based and oil based drilling fluids there are functional differences. These differences may be sufficiently large to require different models for two water based drilling fluids built with different types of polymers. In addition to these phenomena washouts and tool joints will create localised pressure losses. These localised pressure losses will again be coupled with the rheological properties of the drilling fluids. In this paper, all the above mentioned phenomena and their consequences for annular pressure losses will be discussed in detail. North Sea field data is used as an example. It is not straightforward to build general annular pressure loss models. This argument is based on flow stability analysis and the consequences of using drilling fluids with different rheological properties. These different rheological properties include shear dependent viscosity, elongational viscosity and other viscoelastic properties.


2021 ◽  
Author(s):  
Chen Hongbo ◽  
Okesanya Temi ◽  
Kuru Ergun ◽  
Heath Garett ◽  
Hadley Dylan

Abstract Recent studies highlight the significant role of drilling fluid elasticity in particle suspension and hole cleaning during drilling operations. Traditional methods to quantify fluid elasticity require the use of advanced rheometers not suitable for field application. The main objectives of the study were to develop a generalized model for determining viscoelasticity of a drilling fluid using standard field-testing equipment, investigate the factors influencing drilling fluid viscoelasticity in the field, and provide an understanding of the viscoelasticity concept. Over 80 fluid formulations used in this study included field samples of oil-based drilling fluids as well as laboratory samples formulated with bentonite and other polymers such as partially-hydrolyzed polyacrylamide, synthesized xanthan gum, and polyacrylic acid. Detailed rheological characterizations of these fluids used a funnel viscometer and a rotational viscometer. Elastic properties of the drilling fluids (quantified in terms of the energy required to cause an irreversible deformation in the fluid's structure) were obtained from oscillatory tests conducted using a cone-and-plate type rheometer. Using an empirical approach, a non-iterative model for quantifying elasticity correlated test results from a funnel viscometer and a rotational viscometer. The generalized model was able to predict the elasticity of drilling fluids with a mean absolute error of 5.75%. In addition, the model offers practical versatility by requiring only standard drilling fluid testing equipment to predict viscoelasticity. Experimental results showed that non-aqueous fluid (NAF) viscoelasticity is inversely proportional to the oil-water ratio and the presence of clay greatly debilitates the elasticity of the samples while enhancing their viscosity. The work efforts present a model for estimating drilling fluid elasticity using standard drilling fluid field-testing equipment. Furthermore, a revised approach helps to describe the viscoelastic property of a fluid that involves quantifying the amount of energy required to irreversibly deform a unit volume of viscoelastic fluid. The methodology, combined with the explanation of the viscoelasticity concept, provides a practical tool for optimizing drilling operations based on the viscoelasticity of drilling fluids.


Author(s):  
E.A. Flik ◽  
◽  
Y.E. Kolodyazhnaya

The article assesses the environmental safety of drilling fluids that are currently widely used in the oil and gas industry. It shows active development of water-based drilling fluid systems using xanthan biopolymer.


Author(s):  
Jan David Ytrehus ◽  
Ali Taghipour ◽  
Sneha Sayindla ◽  
Bjørnar Lund ◽  
Benjamin Werner ◽  
...  

One important requirement for a drilling fluid is the ability to transport the cuttings out of the borehole. Improved hole cleaning is a key to solve several challenges in the drilling industry and will allow both longer wells and improved quality of well construction. It has been observed, however, that drilling fluids with similar properties according to the API standard can have significantly different behavior with respect to hole cleaning performance. The reasons for this are not fully understood. This paper presents results from flow loop laboratory tests without and with injected cuttings size particles using a base oil and a commercial oil based drilling fluid. The results demonstrate the importance of the rheological properties of the fluids for the hole cleaning performance. A thorough investigation of the viscoelastic properties of the fluids was performed with a Fann viscometer and a Paar-Physica rheometer, and was used to interpret the results from the flow loop experiments. Improved understanding of the fluid properties relevant to hole cleaning performance will help develop better models of wellbore hydraulics used in planning of well operations. Eventually this may lead to higher ROP with water based drilling fluids as obtained with oil based drilling fluids. This may ease cuttings handling in many operations and thereby significantly reduce the drilling cost using (normally) more environmentally friendly fluids. The experiments have been conducted as part of an industry-sponsored research project where understanding the hole cleaning performance of various oil and water based drilling fluids is the aim. The experiments have been performed under realistic conditions. The flow loop includes a 10 meter long test section with 2″ OD freely rotating drillstring inside a 4″ ID wellbore made of concrete. Sand particles were injected while circulating the drilling fluid through the test section in horizontal position.


Author(s):  
Bunyami Shafie ◽  
Lee Huei Hong ◽  
Phene Neoh Pei Nee ◽  
Fatin Hana Naning ◽  
Tze Jin Wong ◽  
...  

Drilling mud is a dense, viscous fluid mixture used in oil and gas drilling operations to bring rock cuttings to the earth's surface from the boreholes as well as to lubricate and cool the drill bit. Water-based mud is commonly used due to its relatively inexpensive and easy to dispose of. However, several components and additives in the muds become increasingly cautious and restricted. Starch was introduced as a safe and biodegradable additive into the water-based drilling fluid, in line with an environmental health concern. In this study, the suitability of four local rice flours and their heat moistures derivatives to be incorporated in the formulation of water-based drilling fluid was investigated. They were selected due to their natural amylose contents (waxy, low, intermediate, and high). They were also heat moisture treated to increase their amylose contents. Results showed that the addition of the rice flours into water-based mud significantly reduced the density, viscosity, and filtrate volume. However, the gel strength of the mud was increased. The rice flours, either native or heat moisture treated, could serve as additives to provide a variety of low cost and environmentally friendly drilling fluids to be incorporated and fitted into different drilling activity.


Author(s):  
Erfan Veisi ◽  
Mastaneh Hajipour ◽  
Ebrahim Biniaz Delijani

Cooling the drill bit is one of the major functions of drilling fluids, especially in high temperature deep drilling operations. Designing stable drilling fluids with proper thermal properties is a great challenge. Identifying appropriate additives for the drilling fluid can mitigate drill-bit erosion or deformation caused by induced thermal stress. The unique advantages of nanoparticles may enhance thermal characteristics of drilling fluids. The impacts of nanoparticles on the specific heat capacity, thermal conductivity, rheological, and filtration control characteristics of water‐based drilling fluids were experimentally investigated and compared in this study. Al2O3, CuO, and Cu nanoparticles were used to prepare the water-based drilling nanofluid samples with various concentrations, using the two-step method. Transmission Electron Microscopy (TEM) and X-Ray Diffraction (XRD) were utilized to study the nanoparticle samples. The nanofluids stability and particle size distribution were, furthermore, examined using Dynamic Light Scattering (DLS). The experimental results indicated that thermal and rheological characteristics are enhanced in the presence of nanoparticles. The best enhancement in drilling fluid heat capacity and thermal conductivity was obtained as 15.6% and 12%, respectively by adding 0.9 wt% Cu nanoparticles. Furthermore, significant improvement was observed in the rheological characteristics such as the apparent and plastic viscosities, yield point, and gel strength of the drilling nanofluids compared to the base drilling fluid. Addition of nanoparticles resulted in reduced fluid loss and formation damage. The permeability of filter cakes decreased with increasing the nanoparticles concentration, but no significant effect in filter cake thickness was observed. The results reveal that the application of nanoparticles may reduce drill-bit replacement costs by improving the thermal and drilling fluid rheological characteristics and decrease the formation damage due to mud filtrate invasion.


Sign in / Sign up

Export Citation Format

Share Document