scholarly journals Evaluation of Working Temperature in Wind Turbine Bearings by Simulation of Lubricant Level

2021 ◽  
Vol 16 (1) ◽  
pp. 99-104
Author(s):  
Yorley Arbella Feliciano ◽  
Carlos A. Trinchet Varela ◽  
Javier A. Vargas Guativas ◽  
Leandro L. Lorente-Leyva ◽  
Diego H. Peluffo-Ordóñez

After studies related to the technical state and behavior of the temperatures manifested by the bearings of the generators that make up the Goldwind wind turbines models S50-750, installed in the Gibara II Wind Farm (PE). It was identified and validated as a tool that enables early diagnosis of anomalous bearing behaviors, SolidWorks (SW) computer-aided design and engineering software (CAD-CAE) and the Flow Simulation add-on. Since it allows studies based on the computational fluid dynamics (CFD), of the temperatures that are manifested in the lubricant during the different working regimes of the generator. The studies carried out evaluated the environmental conditions of exploitation in Cuba. It works on obtaining and predicting the values of the thermal state using the principles and methods for the calculation of heat transfer, the forecast statistics apply. The research supports its theories and postulates in a sample of 6 installed equipment, from China, for it had a historical database that collects temperature measurements in different working conditions which allowed to establish correlation between theoretical predictions and real behaviors.

2019 ◽  
Vol 161 (A1) ◽  

Herein, we present an integrated ship re-design/modification strategy that integrates the ‘Computer-Aided Design (CAD)’ and ‘Computational Fluid Dynamics (CFD)’ to modify the ship hull form for better performance in resistance. We assume a modular design and the ship hull form modification focuses on the forward module (e.g. bulbous bow) and aft module (e.g. stern bulb) only. The ship hull form CAD model is implemented with NAPA*TM and CFD model is implemented with Shipflow**TM. The basic ship hull form parameters are not changed and the modifications in some of the technical parameters because of re-designed bulbous bow and stern bulb are kept at very minimum. The bulbous bow is re-designed by extending an earlier method (Sharma and Sha (2005b)) and stern bulb parameters for re-design are computed from the experience gained from literature survey. The re-designed hull form is modeled in CAD and is integrated and analyzed with Shipflow**TM. The CAD and CFD integrated model is validated and verified with the ITTC approved recommendations and guidelines. The proposed numerical methodology is implemented on the ship hull form modification of a benchmark ship, i.e. KRISO container ship (KCS). The presented results show that the modified ship hull form of KCS - with only bow and stern modifications - using the present strategy, results into resistance and propulsive improvement.


2021 ◽  
pp. 1-12
Author(s):  
Ashutosh Dikshit ◽  
Vivek Agnihotri ◽  
Mike Plooy ◽  
Amrendra Kumar ◽  
Seymur Gurbanov ◽  
...  

Summary Integrating a flow control sliding sleeve into a sand screen can provide multiple advantages to the user in controlling the production inflow, but it comes with an increased completion cost as well as an increase in the number of interventions required when it is time to operate those valves. Especially in long horizontal wells, this can become time-consuming and inefficient. A few technologies exist to address this issue, but they either are too complex or require specialized rigging equipment at the wellsite, which is not desirable. As described herein, a unique, fit-for-application modular sliding sleeve sand screen assembly with dissolvable plugs was developed that eliminates the need for washpipe during run-in-hole (RIH) and allows flow control from several screens by means of a single sliding sleeve door (SSD), thereby also optimizing the subsequent intervention operations by reducing the number of SSDs in the well. The design and field installation of these modular screens is presented in this paper. The new modular sand screen consisted of an upper joint, modular middle joint, modular middle joint with an inflow control device (ICD) integrated into an SSD (with optional dissolvable plugs), a lower joint, and novel field-installable flow couplings between them. The design allows for any number of non-ICD/SSD screen joints to be connected to any number of ICD/SSD joints in any order. A computer-aided design was followed to achieve all the operational and mechanical requirements. Computational fluid dynamics (CFD) was used to optimize the flow performance characteristics. Prototypes were manufactured and tested before conducting successful field trials. The design process, development, and field installation results are presented herein.


Author(s):  
Andrew Koehring ◽  
Eliot Winer

Currently, there are many engineering software packages targeted toward high fidelity modeling. Computer aided design (CAD) tools are one example of this. The need for increasingly accurate models has caused this class of software to become even more detailed and comprehensive. Modeling a single design can be a time intensive process; so much so, that most modeling is done by specifically trained CAD professionals, not designers. These advancements in CAD software are at odds with the goal of conceptual design, which is to generate and evaluate as many concepts as possible in a limited amount of time. Within the engineering design process, changes made in preliminary stages have much greater impact for significantly less cost. Unfortunately, few software packages exist that are tailored for use so early in a product’s design cycle. This paper presents an application developed specifically for conceptual design. Through the use of an augmented reality environment, designers are able to quickly and intuitively assemble concepts. Potential designs can be easily manipulated in three dimensions, enhancing the ability to communicate the idea to others.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Limin Zhu ◽  
Xiaolei Gong ◽  
Jinlong Liu ◽  
Youjin Li ◽  
Yumin Zhong ◽  
...  

Multisegmental complex congenital tracheal stenosis (CTS) is an uncommon but potentially life-threatening malformation of the airway. Staged surgery is indicated for the complex pathophysiology of the abnormal trachea. Surgical intervention to fix the stenotic segments may result in different postoperative outcomes. However, only few studies reported the design of surgical correction for multisegmental CTS. We used computer-aided design (CAD) to simulate surgical correction under different schemes to develop a patient-specific tracheal model with two segmental stenoses. Computational fluid dynamics (CFD) was used to compare the outcomes of different designs. Aerodynamic parameters of the trachea were evaluated. An obvious interaction was found between the two segments of stenosis in different surgical designs. The surgical corrective order of stenotic segments greatly affected the aerodynamic parameters and turbulence flows downstream of tracheal stenosis and upstream of the bronchus. Patient-specific studies using CAD and CFD minimize the risk of staged surgical correction and facilitate quantitative evaluation of surgical design for multiple segments of complex CTS.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5090 ◽  
Author(s):  
Jennifer García ◽  
Ismael Ríos ◽  
Faruk Fonthal Rico

In this paper, we introduce a novel type of transdermal drug delivery device (TD3) with a micro-electro-mechanical system (MEMS) design using computer-aided design (CAD) techniques as well as computational fluid dynamics (CFD) simulations regarding the fluid interaction inside the device during the actuation process. For the actuation principles of the chamber and microvalve, both thermopneumatic and piezoelectric principles are employed respectively, originating that the design perfectly integrates those principles through two different components, such as a micropump with integrated microvalves and a microneedle array. The TD3 has shown to be capable of delivering a volumetric flow of 2.92 × 10−5 cm3/s with a 6.6 Hz membrane stroke frequency. The device only needs 116 Pa to complete the suction process and 2560 Pa to complete the discharge process. A 38-microneedle array with 450 µm in length fulfills the function of permeating skin, allowing that the fluid reaches the desired destination and avoiding any possible pain during the insertion.


1988 ◽  
Vol 13 (1) ◽  
pp. 55-65 ◽  
Author(s):  
Umesh Kumar ◽  
Arun Mirchandani

The differential equation describing the small signal behavior of a MOSFET channel is derived. Based on the analogy of the channel to distributed transmission lines, which has been very well established in literature, an entirely new RGC line model of MOSFET is presented. The element values of the line are determined by equivalence to a general distributed transmission line and subsequently the model is lumped into a single section in two possible Π and T representations. The postulated model considerably simplifies the study of the properties and behavior of MOSFET structures and can be suitably utilized in analysis and Computer Aided Design.


Author(s):  
Xu Zhang ◽  
David J. J. Toal ◽  
Neil W. Bressloff ◽  
Andy J. Keane ◽  
Frederic Witham ◽  
...  

The following paper presents an overview of the Prometheus design system and its applications to gas turbine combustor design. Unlike a traditional “optimizer-centric” method, Prometheus aims to reduce both the level of workflow complexity and rework by taking a more “geometry-centric” approach to design optimization by shifting the control of script generation away from the optimization program to the computer aided design (CAD) package. Prometheus therefore enables significant geometry changes to be automatically reflected in all subsequent scripts necessary for the analysis of a combustor. Prometheus’ current capabilities include automatic fluid volume generation and aero-thermal and thermo-acoustic network generation as well as automatic mesh and computational fluid dynamics (CFD) script generation.


2006 ◽  
Vol 128 (10) ◽  
pp. 34-36
Author(s):  
Jean Thilmany

This paper describes an automated system to address disconnect between the design and analysis programs. The disconnect between computer-aided design (CAD) and analysis occurs because one system is powered by geometrical information and the other is not. One system is meant to handle geometry, while the other creates a mesh and does not rely on geometry in the same way that CAD does. Engineering software developers coming up with a design-analysis workaround by building design automation into their CAD packages. This method gives engineers vital information about the part from the get-go. The information is gleaned from the past designs for similar parts and can be automatically included in the new model. Such automated systems capture expert knowledge and reapply it to other models. The system might ask engineers to answer several questions about what they intend to design before they even start. The automated system would help engineers build parts upfront that would meet criteria for phenomena from varied disciplines, including fluid, structural, or thermal analysis.


2006 ◽  
Vol 128 (04) ◽  
pp. 36-38
Author(s):  
Jean Thilmany

This paper analyzes research work on developing techniques to study complex fluids. Although several computational fluid dynamics (CFD) vendors now sell desktop software that mechanical engineers can buy to model complex flows, many problems are still simply too hard for those applications. According to engineers, CFD programs for these complex problems can take years to write, even with the supercomputer's aid. Moreover, some flows may never be modeled: they are just too complex for even the most advanced software. Behr and a colleague, Matteo Pasquali, an Associate Professor in the Department of Chemical and Biomolecular Engineering at Rice University, are now at work writing a CFD application that will help a heart-pump manufacturer analyze how blood would move through different configurations of the pump. Pasquali and Behr spent two years trying to turn the pump geometry and performance data Baylor provided into usable data. They converted the pump's computer-aided design information and input it into their homegrown CFD program, then came up with software tools to rotate one part of the computationally meshed pump element with respect to another.


Sign in / Sign up

Export Citation Format

Share Document