scholarly journals A Weight Based Feature Extraction Model on Multifaceted Multimedia Bigdata Using Convolutional Neural Network

2020 ◽  
Vol 25 (6) ◽  
pp. 729-735
Author(s):  
Venkata Rao Maddumala ◽  
Arunkumar R

This paper intends to present main technique for feature extraction on multimeda getting well versed and a challenging task to handle big data. Analyzing and feature extracting valuable data from high dimensional dataset challenges the bounds of measurable methods and strategies. Conventional techniques in general have less performance while managing high dimensional datasets. Lower test size has consistently been an issue in measurable tests, which get bothered in high dimensional information due to more equivalent or higher component size than the quantity of tests. The intensity of any measurable test is legitimately relative to its capacity to lesser an invalid theory, and test size is a significant central factor in producing probabilities of errors for making substantial ends. Thus one of the effective methods for taking care of high dimensional datasets is by lessening its measurement through feature selection and extraction with the goal that substantial accurate data can be practically performed. Clustering is the act of finding hidden or comparable data in information. It is one of the most widely recognized techniques for realizing useful features where a weight is given to each feature without predefining the various classes. In any feature selection and extraction procedures, the three main considerations of concern are measurable exactness, model interpretability and computational multifaceted nature. For any classification model, it is important to ensure that the productivity of any of these three components isn't undermined. In this manuscript, a Weight Based Feature Extraction Model on Multifaceted Multimedia Big Data (WbFEM-MMB) is proposed which extracts useful features from videos. The feature extraction strategies utilize features from the discrete cosine methods and the features are extracted using a pre-prepared Convolutional Neural Network (CNN). The proposed method is compared with traditional methods and the results show that the proposed method exhibits better performance and accuracy in extracting features from multifaceted multimedia data.

2020 ◽  
Vol 43 (1) ◽  
pp. 103-125
Author(s):  
Yi Zhong ◽  
Jianghua He ◽  
Prabhakar Chalise

With the advent of high throughput technologies, the high-dimensional datasets are increasingly available. This has not only opened up new insight into biological systems but also posed analytical challenges. One important problem is the selection of informative feature-subset and prediction of the future outcome. It is crucial that models are not overfitted and give accurate results with new data. In addition, reliable identification of informative features with high predictive power (feature selection) is of interests in clinical settings. We propose a two-step framework for feature selection and classification model construction, which utilizes a nested and repeated cross-validation method. We evaluated our approach using both simulated data and two publicly available gene expression datasets. The proposed method showed comparatively better predictive accuracy for new cases than the standard cross-validation method.


2021 ◽  
Vol 11 (3) ◽  
pp. 803-809
Author(s):  
J. Jayanthi ◽  
T. Jayasankar ◽  
N. Krishnaraj ◽  
N. B. Prakash ◽  
A. Sagai Francis Britto ◽  
...  

Diabetic retinopathy (DR), a major cause of vision loss and it raises a major issue among diabetes people. DR considerably affect the financial condition of the society specially in medicinal sector. Once proper treatment is given to the DR patients, roughly 90% of patients can be saved from vision loss. So, it is needed to develop a DR classification model for classifying the stages and severity level of DR to offer better treatment. This article develops a novel Particle Swarm Optimization (PSO) algorithm based Convolutional Neural Network (CNN) Model called PSO-CNN model to detect and classify DR from the color fundus images. The proposed PSO-CNN model comprises three stages namely preprocessing, feature extraction and classification. Initially, preprocessing is carried out as a noise removal process to discard the noise present in the input image. Then, feature extraction process using PSO-CNN model is applied to extract the useful subset of features. Finally, the filtered features are given as input to the decision tree (DT) model for classifying the set of DR images. The simulation of the PSO-CNN model takes place using a benchmark DR database and the experimental outcome stated that the PSO-CNN model has outperformed all the compared methods in a significant way. The outcome of the simulation process indicated that the PSO-CNN model has offered maximum results.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Young-Gon Kim ◽  
Sungchul Kim ◽  
Cristina Eunbee Cho ◽  
In Hye Song ◽  
Hee Jin Lee ◽  
...  

AbstractFast and accurate confirmation of metastasis on the frozen tissue section of intraoperative sentinel lymph node biopsy is an essential tool for critical surgical decisions. However, accurate diagnosis by pathologists is difficult within the time limitations. Training a robust and accurate deep learning model is also difficult owing to the limited number of frozen datasets with high quality labels. To overcome these issues, we validated the effectiveness of transfer learning from CAMELYON16 to improve performance of the convolutional neural network (CNN)-based classification model on our frozen dataset (N = 297) from Asan Medical Center (AMC). Among the 297 whole slide images (WSIs), 157 and 40 WSIs were used to train deep learning models with different dataset ratios at 2, 4, 8, 20, 40, and 100%. The remaining, i.e., 100 WSIs, were used to validate model performance in terms of patch- and slide-level classification. An additional 228 WSIs from Seoul National University Bundang Hospital (SNUBH) were used as an external validation. Three initial weights, i.e., scratch-based (random initialization), ImageNet-based, and CAMELYON16-based models were used to validate their effectiveness in external validation. In the patch-level classification results on the AMC dataset, CAMELYON16-based models trained with a small dataset (up to 40%, i.e., 62 WSIs) showed a significantly higher area under the curve (AUC) of 0.929 than those of the scratch- and ImageNet-based models at 0.897 and 0.919, respectively, while CAMELYON16-based and ImageNet-based models trained with 100% of the training dataset showed comparable AUCs at 0.944 and 0.943, respectively. For the external validation, CAMELYON16-based models showed higher AUCs than those of the scratch- and ImageNet-based models. Model performance for slide feasibility of the transfer learning to enhance model performance was validated in the case of frozen section datasets with limited numbers.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4916
Author(s):  
Ali Usman Gondal ◽  
Muhammad Imran Sadiq ◽  
Tariq Ali ◽  
Muhammad Irfan ◽  
Ahmad Shaf ◽  
...  

Urbanization is a big concern for both developed and developing countries in recent years. People shift themselves and their families to urban areas for the sake of better education and a modern lifestyle. Due to rapid urbanization, cities are facing huge challenges, one of which is waste management, as the volume of waste is directly proportional to the people living in the city. The municipalities and the city administrations use the traditional wastage classification techniques which are manual, very slow, inefficient and costly. Therefore, automatic waste classification and management is essential for the cities that are being urbanized for the better recycling of waste. Better recycling of waste gives the opportunity to reduce the amount of waste sent to landfills by reducing the need to collect new raw material. In this paper, the idea of a real-time smart waste classification model is presented that uses a hybrid approach to classify waste into various classes. Two machine learning models, a multilayer perceptron and multilayer convolutional neural network (ML-CNN), are implemented. The multilayer perceptron is used to provide binary classification, i.e., metal or non-metal waste, and the CNN identifies the class of non-metal waste. A camera is placed in front of the waste conveyor belt, which takes a picture of the waste and classifies it. Upon successful classification, an automatic hand hammer is used to push the waste into the assigned labeled bucket. Experiments were carried out in a real-time environment with image segmentation. The training, testing, and validation accuracy of the purposed model was 0.99% under different training batches with different input features.


2021 ◽  
pp. 1-10
Author(s):  
Chien-Cheng Leea ◽  
Zhongjian Gao ◽  
Xiu-Chi Huanga

This paper proposes a Wi-Fi-based indoor human detection system using a deep convolutional neural network. The system detects different human states in various situations, including different environments and propagation paths. The main improvements proposed by the system is that there is no cameras overhead and no sensors are mounted. This system captures useful amplitude information from the channel state information and converts this information into an image-like two-dimensional matrix. Next, the two-dimensional matrix is used as an input to a deep convolutional neural network (CNN) to distinguish human states. In this work, a deep residual network (ResNet) architecture is used to perform human state classification with hierarchical topological feature extraction. Several combinations of datasets for different environments and propagation paths are used in this study. ResNet’s powerful inference simplifies feature extraction and improves the accuracy of human state classification. The experimental results show that the fine-tuned ResNet-18 model has good performance in indoor human detection, including people not present, people still, and people moving. Compared with traditional machine learning using handcrafted features, this method is simple and effective.


Sign in / Sign up

Export Citation Format

Share Document