scholarly journals PID Tuning Method Using Chaotic Safe Experimentation Dynamics Algorithm for Elastic Joint Manipulator

2021 ◽  
Vol 54 (5) ◽  
pp. 693-698
Author(s):  
Mohd Ikhmil Fadzrizan Mohd Hanif ◽  
Mohd Ashraf Ahmad ◽  
Julakha Jahan Jui

This paper proposed the chaotic safe experimentation dynamics algorithm (CSEDA) to regulate angular tracking and vibration of the self-tuning PID controller for elastic joint manipulators. CSEDA was a modified version of the safe experimentation dynamics algorithm (SEDA) that used a chaos function in the updated equation. The chaos function increased the exploration capability, thus improving the convergence accuracy. In this study, two self-tuning PID controllers were used to regulate the rotating angle tracking and vibration for elastic joint manipulators in this control challenge. The suggested self-tuning PID controller's performance was evaluated in angular motion trajectory tracking, vibration suppression, and the pre-determined control fitness function. A self-tuned PID controller based on CSEDA could achieve superior control accuracy than a traditional SEDA and its variants.

Various tuning methods have been proposed for proportional-integral-derivative (PID) controller. A respectively new and simple experimental method for tuning PID controllers named a Good Gain method that was recently proposed by F. Haugen in 2010, this method is not yet recognized among the other known methods for tuning. However, the founder of this methods claims that it can be an alternative to the famous Ziegler-Nichols. In this paper, PID tuning method has been performed experimentally using a real water level system in order to test and validates the Good Gain method. Also other PID tuning methods applied to the same system to compare the results. The results show that the Good Gain method gives an acceptable stability and response comparing to the other industrial PID controller tuning procedures


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 423
Author(s):  
Gun-Baek So

Although a controller is well-tuned for set-point tracking, it shows poor control results for load disturbance rejection and vice versa. In this paper, a modified two-degree-of-freedom (2-DOF) control framework to solve this problem is proposed, and an optimal tuning method for the pa-rameters of each proportional integral derivative (PID) controller is discussed. The unique feature of the proposed scheme is that a feedforward controller is embedded in the parallel control structure to improve set-point tracking performance. This feedforward controller and the standard PID con-troller are combined to create a new set-point weighted PID controller with a set-point weighting function. Therefore, in this study, two controllers are used: a set-point weighted PID controller for set-point tracking and a conventional PID controller for load disturbance rejection. The parameters included in the two controllers are tuned separately to improve set-point tracking and load dis-turbance rejection performances, respectively. Each controller is optimally tuned by genetic algo-rithm (GA) in terms of minimizing the IAE performance index, and what is special at this time is that it also tunes the set-point weighting parameter simultaneously. The simulation results performed on four virtual processes verify that the proposed method shows better performance in set-point tracking and load disturbance rejection than those of the other methods.


Author(s):  
Sheng-Yi Ruan ◽  
Jun Ye ◽  
Wen-Hua Cui

This chapter introduces an improved proportional-integral-derivative (PID) adjusting method by applying a simulated annealing algorithm (SAA) and the cosine, tangent, exponential measures of single-valued neutrosophic sets (SvNSs). For the approach, characteristic values of the unit step response (rise time, peak time, settling time, undershoot ratio, overshoot ratio, and steady-state error) in the control system should be neutrosophicated by the neutrosophic membership functions. Next, one of cosine, tangent, and exponential measures is used to obtain the similarity measure of the ideal SvNS and the response SvNS to assess the control performance of the PID controller by the optimization values of the PID parameters Kp, Ki, and Kd searched by SAA. The results of the illustrative example obtained by these measures and SAA are better than the existing ones and indicate better PID controller performance. Comparative results can demonstrate the rationality and superiority of the improved PID adjusting method.


2012 ◽  
Vol 241-244 ◽  
pp. 1248-1254
Author(s):  
Feng Chen Huang ◽  
Hui Feng ◽  
Zhen Li Ma ◽  
Xin Hui Yin ◽  
Xue Wen Wu

Fuzzy control, based on traditional Proportional-Integral-Derivative (PID) control, is used to improve the management of a hydro-junction’s sluice scheduling. In this study, we combined the PID and Fuzzy control theories and determined the PID parameters of the fuzzy self-tuning method of a hydro-junction’s sluice. A fuzzy self-tuning PID controller and its algorithm were designed. In hydro-junction sluice control, the Fuzzy PID controller can modify PID parameters in real-time, resulting in a more dynamic response. The application of the fuzzy self-tuning PID controller in the CiHuai River project information integration system yielded very good results.


1986 ◽  
Vol 19 (9) ◽  
pp. 260-266 ◽  
Author(s):  
A Carmon

The paper reviews the operation of an on-line continuously adaptive PID controller which uses an expert system approach to self-tune. The benefits of using continuously adaptive control have been demonstrated by trial installations and have produced financial returns running into six figure values per annum per loop. Indirect benefits such as better insight into plant controllability (used to indicate a need for plant maintenance) and faster plant startups have been identified by users. The paper stresses the need for experience feedback in developing the understanding of the industry in the correct and best use of this new technology, a technology which promises to become the industry standard. An application guideline is provided and some limitations are pointed out. Some features that help make it a robust and secure product in a process control environment are also indicated.


2020 ◽  
Vol 14 ◽  

In nowadays industry, most processes are controlled and automated. Interestingly, PID controllers are major contributors to the control process since they were invented and become quite practical. PID controllers are vital component in the industry and enhancing the component will show an echo effect in today’s technology. Their drawbacks are tuning them for an application, and this provides inspiration to develop advanced optimization methods in tuning PID controllers. This survey aims to review metaheuristic optimization methods of PID controller tuning that were published between 2010 and 2018. The paper was constructed based on 22 research papers and found that 8 metaheuristics optimization methods were used with PID tuning on 5 industrial applications. The papers also extensively provided answers to 3 research questions and assessing the quality of the papers based on 6 parameters.


This paper deals with design method of fuzzy controller for improving efficiency of DC-DC power converter. To design optimal control by fuzzy, this paper introduces optimal switching time and optimal switching mode of PWM. DC-DC Power converter is one of energy conversion device to transfer DC input source to DC output. When they transfer DC to DC, they have been using PID controller or fuzzy controller. Therefore, the efficiency of DC conversion strongly depends on PID parameter. Some papers illustrate tuning method of PID controller for this but have not been mentioning about the switching time and switching mode that can influence on the efficiency of DC-DC conversion. This paper suggests effective DC-DC conversion method by means of introducing switching time and switching mode into fuzzy based PID tuning


Author(s):  
Yasir G. Rashid ◽  
Ahmed Mohammed Abdul Hussain

The point of this paper presents an optimization technique which is flexible and quick tuning by using a genetic algorithm (GA) to obtain the optimum proportional-integral-derivative (PID) parameters for speed control of aseparately excited DC motor as a benchmark for performance analysis. The optimization method is used for searching for the proper value of PID parameters. The speed controller of DC motor using PID tuning method sincludes three types: MATALB PID tunner app., modified Ziegler-Nicholsmethod and genetic algorithm (GA). PID controller parameters (Kp, Ki and Kd) will be obtained by GA to produce optimal performance for the DC motor control system. Simulation results indicate that the tuning method of PID by using a genetic algorithm is shown to create the finest result in system performance such as settling time, rise time, percentage of overshoot and steady state error. The MATLAB/Simulink software is used to model and simulate the proposed DC motor controller system.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 939
Author(s):  
Kyoung-Min Choo ◽  
Chung-Yuen Won

In this paper, a model-based tuning method for a PID controller of excitation systems based on a simplified model that considers measurement delay is proposed. The conventional model-based tuning method, which has been studied previously, uses a simplified excitation system model that ignores all the delay components. However, since the rms voltage measurement can take hundreds of milliseconds to calculate depending on the system settings, this delay cannot be ignored when the required response needs to be as fast as the measurement delay. Furthermore, the linearity of the measurement method is not taken into account because the measurement delay has already been ignored. Therefore, in this paper, a simplified model that considers measurement delay and its linearity is proposed, and a model-based tuning method of PID controllers for two kinds of excitation systems is proposed and compared with the conventional method by analysis. To verify the analysis and proposed tuning method, experiments are conducted for both excitation systems.


Author(s):  
Mostafa Abdul Fellani ◽  
Aboubaker M. Gabaj

The industrial application of Coupled Tank System (CTS) is widely used especially in chemical process industries. The control of liquid level in tanks and flow between tanks is a problem in the process technologies. The process technologies require liquids to be pumped, stored in tanks, and then pumped to another tank systematically. This paper presents development of Proportional-Integral-Derivative (PID) controller for controlling the desired liquid level of the CTS. Various conventional techniques of PID tuning method will be tested in order to obtain the PID controller parameters. Simulation is conducted within MATLAB environment to verify the performances of the system in terms of Rise Time (Ts), Settling Time (Ts), Steady State Error (SSE) and Overshoot (OS). The trial and error method of tunning will be implemented and all the performance results will be analyzed using MATLAB. It has been demonstrated that performances of CTS can be improved with appropriate technique of PID tuning methods.


Sign in / Sign up

Export Citation Format

Share Document