scholarly journals Performance Investigation of Small Wind Turbine Installed over a Pick up Vehicle to Charge an Electric Vehicle Battery

2021 ◽  
Vol 54 (5) ◽  
pp. 783-788
Author(s):  
Gashaw A. Anagie ◽  
Abdulkadir A. Hassen ◽  
Yihun T. Sintie

Wind energy is a vital energy free from pollution and freely available energy in our world. The purpose of this research is performance investigation of small horizontal axis wind turbine installed at the top of a pickup vehicle and the power generated from this wind turbine is used to charge the batteries of the vehicle. Permanent magnet generator is selected for the experiment as well as the selected type of the blade is NACA 4412 and its angle of attack is 6°. The angle of attack is determined by using Qblade software at the maximum lift to drag ratio of NACA 4412 airfoil. The blades of wind turbine are fabricated from wood because wood have excellent fatigue properties. The comparison between analytical analysis and experimental test is done based on the reaction wind speed, in order to achieve good matching between analytical analysis and experimental test. Finally, the power output from the wind turbine is used for charging the vehicle battery and the charging process is controlled by regulator. The maximum powers determined from the experimental and theoretical analysis are 334 W and 437 W at reaction wind speed of 28.6m⁄s respectively at the maximum vehicle speed of 25m⁄s.

Author(s):  
Salete Alves ◽  
Luiz Guilherme Vieira Meira de Souza ◽  
Edália Azevedo de Faria ◽  
Maria Thereza dos Santos Silva ◽  
Ranaildo Silva

2015 ◽  
Vol 758 ◽  
pp. 13-19 ◽  
Author(s):  
Erwin ◽  
Slamet Wiyono ◽  
Erny Listijorini ◽  
Rina Lusiani ◽  
Tresna P. Soemardi

Use of NACA 0012 at the Sultan Wind Turbine prototype provide value coefficient power turbine at wind speed 5.5 m / s by 0017 , wind speed 6.1 m / s at 0.015 , wind speed 7.7 m / s at 0.016 , wind speed 6.5 m / s for 0018 and wind speed 6.2 m / s by 0017 . Where the value of the highest efficiency obtained at a speed of 6.5 m / s at 0.018 . This result is not as expected to generate sufficient energy.The next development carried out investigations on some kind of airfoil, from investigations obtained by using Qblade software that NACA 6612 has a value of 1.78 CL at 15 degrees angle of attack is the largest of all the airfoil .In this research, NACA 6612 will be simulated with a variable chord length, angle of attack, and wind speed, of these three variables will be created which will map graphics 3d sliding value of the ratio of the 3 variables, this graph will give recommendations most optimum combination of variables to types are mapped wind speed throughout the year, to produce optimum power.Optimum combination of NACA 6612 with wind speed varied from 2-7 m/s is chord length 30 cm and angle of attack 7 degree.


2006 ◽  
Vol 128 (4) ◽  
pp. 432-444 ◽  
Author(s):  
Chanin Tongchitpakdee ◽  
Sarun Benjanirat ◽  
Lakshmi N. Sankar

The aerodynamic performance of a wind turbine rotor equipped with circulation enhancement technology (trailing-edge blowing or Gurney flaps) is investigated using a three-dimensional unsteady viscous flow analysis. The National Renewable Energy Laboratory Phase VI horizontal axis wind turbine is chosen as the baseline configuration. Experimental data for the baseline case is used to validate the flow solver, prior to its use in exploring these concepts. Calculations have been performed for axial and yawed flow at several wind conditions. Results presented include radial distribution of the normal and tangential forces, shaft torque, root flap moment, and surface pressure distributions at selected radial locations. At low wind speed (7m∕s) where the flow is fully attached, it is shown that a Coanda jet at the trailing edge of the rotor blade is effective at increasing circulation resulting in an increase of lift and the chordwise thrust force. This leads to an increased amount of net power generation compared to the baseline configuration for moderate blowing coefficients (Cμ⩽0.075). A passive Gurney flap was found to increase the bound circulation and produce increased power in a manner similar to Coanda jet. At high wind speed (15m∕s) where the flow is separated, both the Coanda jet and Gurney flap become ineffective. The effects of these two concepts on the root bending moments have also been studied.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2649 ◽  
Author(s):  
Artur Bugała ◽  
Olga Roszyk

This paper presents the results of the computational fluid dynamics (CFD) simulation of the airflow for a 300 W horizontal axis wind turbine, using additional structural elements which modify the original shape of the rotor in the form of multi-shaped bowls which change the airflow distribution. A three-dimensional CAD model of the tested wind turbine was presented, with three variants subjected to simulation: a basic wind turbine without the element that modifies the airflow distribution, a turbine with a plano-convex bowl, and a turbine with a centrally convex bowl, with the hyperbolic disappearance of convexity as the radius of the rotor increases. The momentary value of wind speed, recorded at measuring points located in the plane of wind turbine blades, demonstrated an increase when compared to the base model by 35% for the wind turbine with the plano-convex bowl, for the wind speed of 5 m/s, and 31.3% and 49% for the higher approaching wind speed, for the plano-convex bowl and centrally convex bowl, respectively. The centrally convex bowl seems to be more appropriate for higher approaching wind speeds. An increase in wind turbine efficiency, described by the power coefficient, for solutions with aerodynamic bowls was observed.


2011 ◽  
Vol 52-54 ◽  
pp. 1556-1559
Author(s):  
Ping He ◽  
Nai Chao Chen ◽  
Dan Mei Hu

The liquid-gas flow is proposed to accurately simulate the offshore environmental state. The aerodynamic feature is estimated using the three-dimensional model of horizontal-axis wind turbine with NRELS809 series aerofoil by means of the simulating software tool of FLUENT. The variable speed is implemented via the six different wind speeds. The calculated results show that the similarly evolutional tendency of velocity occurs in the wake region when operating at the six variable speeds. The stall speed is related to blade height and wind speed. The small blade height or large wind speed also leads to the serious stall phenomenon. The total force is conducted to estimate the potential capability for leeward and windward surface to capture wind power. The calculated results reveal that the larger wind speed facilitates generating the more magnitude of total force. However, the velocity and force feature for the wind turbine has the especially rapid change at the wind speed of 6 m/s, which perhaps results from the intrinsic geometry and configuration.


Author(s):  
Ohad Gur ◽  
Aviv Rosen

The optimal aerodynamic design of Horizontal Axis Wind Turbine (HAWT) is investigated. The Blade-element/Momentum model is used for the aerodynamic analysis. In the first part of the paper a simple design method is derived, where the turbine blade is optimized for operation at a specific wind speed. Results of this simple optimization are presented and discussed. Besides being optimized for operation at a specific wind speed, without considering operation at other wind speeds, the simple model is also limited in the choice of design goals (cost functions), design variables and constraints. In the second part of the paper a comprehensive design method that is based on a mixed numerical optimization strategy, is presented. This method can handle almost any combination of: design goal, design variables, and constraints. Results of this method are presented, compared with the results of the simple optimization, and discussed.


Author(s):  
Manoj Kumar Chaudhary ◽  
◽  
S. Prakash ◽  

In this research work, the investigation and optimization of small horizontal axis wind turbine blade at low wind speed is pursued. The experimental blades were developed using the 3D printing additive manufacturing technique. The airfoils E210, NACA2412, S1223, SG6043, E216, NACA4415, SD7080, SD7033, S1210 and MAF were tested at the wind speed of 2-6 m/s. The airfoils and optimum blade geometry were investigated with the aid of the Xfoil software at Reynolds number of 100,000. The initial investigation range included tip speed ratios from 3 to 10, solidity from 0.0431 – 0.1181 and angle of attacks from 2o to 20o. Later on these parameters were varied in MATLAB and Xfoil software for optimization and investigation of the power coefficient, lift coefficient, drag coefficient and lift to drag ratio. The cut-in wind speed of the rotors was 2 and 2.5 m/s with the winglet-equipped blades and without winglets. It was found that the E210, SG6043, E216 NACA4415 and MAF airfoil displayed better performance than the NACA 2412, S1223, SD7080, S1210 & SD7003 for the geometry optimized for the operating conditions and manufacturing method described.


2021 ◽  
Vol 19 ◽  
pp. 505-510
Author(s):  
Cristhian Leonardo Pabón Rojas ◽  
◽  
Carlos Andrés Trujillo Suarez ◽  
Juan Carlos Serrano Rico ◽  
Elkin Gregorio Flórez Serrano ◽  
...  

In order to take advantage of the low wind speed found in the Colombian territory, a gradient-based optimization process (GBA) of 2 airfoils is carried out, using the Xfoil software to evaluate the interactions. The shapes chosen will be destined for the root and for the middle zone of a blade for a small horizontal axis wind turbine (sHAWT). The blade will be created from the calculation of the chord and pitch angle with the blade element momentum methodology (BEM) and the SHAWT will be tested by CFD software to check its performance. As a preliminary result, a root-bound airfoil has been obtained with a higher performance than the airfoil used as a bases.


Sign in / Sign up

Export Citation Format

Share Document