scholarly journals Borehole Thermal Analysis for a Closed Loop Vertical U-Tube DX Ground Heat Exchanger

2021 ◽  
Vol 8 (4) ◽  
pp. 501-509
Author(s):  
Ali H. Tarrad

The borehole geometry configuration and its sizing represent great challenges to the thermal equipment designer in the field of geothermal energy source. The present work represents a piece in that direction to avoid elaborate mathematical and computation schemes constraints for the preliminary design of the U-tube ground heat exchanger operates under a steady-state condition. A correlation was built for the prediction of the borehole thermal resistance. The U-tube diameter, leg spacing, borehole diameter, and the offset configuration with respect to the center of the borehole were introduced in the present correlation. An equivalent tube formula and borehole configuration were postulated to possess the same grout volume as the original loop. A variety of geometrical configurations were tested at different U-tube and borehole sizes. The predicted total thermal resistance of the borehole was implemented into the thermal design of the (DX) ground condenser to sizing the borehole U-tube heat exchanger. A hypothetical cooling unit of (1) ton of refrigeration that circulates R410A refrigerant was chosen for the verification of the present model outcomes. The predicted thermal resistance revealed an excellent agreement with other previously published work in this category.

Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 651 ◽  
Author(s):  
Sang Bae ◽  
Yujin Nam ◽  
Jong Choi ◽  
Kwang Lee ◽  
Jae Choi

A ground source heat pump (GSHP) system has higher performance than air source heat pump system due to the use of more efficient ground heat source. However, the GSHP system performance depends on ground thermal properties and groundwater conditions. There are many studies on the improvement of GSHP system by developing ground heat exchanger (GHX) and heat exchange method. Several studies have suggested methods to improve heat exchange rate for the development of GHX. However, few real-scale experimental studies have quantitatively analyzed their performance using the same ground conditions. Therefore, the objective of this study was to evaluate the thermal performance of various pipe types of GHX by the thermal response test (TRT) under the same field and test conditions. Four kinds of GHX (HDPE type, HDPE-nano type, spiral fin type, and coaxial type) were constructed in the same site. Inlet and outlet temperatures of GHXs and effective thermal conductivity were measured through the TRT. In addition, the borehole thermal resistance was calculated to comparatively analyze the correlation of the heat exchange performance with each GHX. Result of the TRT revealed that averages effective thermal conductivities of HDPE type, HDPE-nano, spiral fin type, and coaxial type GHX were 2.25 W/m·K, 2.34 W/m·K, 2.55 W/m·K, and 2.16 W/m·K, respectively. In the result, it was found that the average borehole thermal resistance can be an important factor in TRT, but the effect of increased thermal conductivity of pipe material itself was not significant.


2013 ◽  
Vol 732-733 ◽  
pp. 103-108 ◽  
Author(s):  
Han Byul Kang ◽  
Seok Yoon ◽  
Gyu Hyun Go ◽  
Seung Rae Lee

The Ground-Coupled or Source Heat Pump (GCHP/GSHP) system is increasingly being considered as an alternative to traditional cooling/heating system because it can reduce the emission of greenhouse gases. The GCHP/GSHP system uses sustainable ground temperature to emit heat during the summer and to extract heat during the winter. It is a ubiquitous system because it can be used at any time or place and semi-permanent energy. The geothermal system is composed of Ground Heat Exchanger (GHE), heat pump and load facilities. The GHE is embedded in a borehole, which is made up of GHE and grout. The borehole thermal resistance is the most important parameter in designing the geothermal system because it shows the quantity of heat transfer in the borehole. There are many methods to estimate the borehole thermal resistance. Thermal Performance Tests (TPTs) were conducted to directly measure the borehole thermal resistance of several kinds of GHEs. Then the experiment results and analytical results were compared in order to select the most accurate methods to evaluate the borehole thermal resistance.


2013 ◽  
Vol 29 (10) ◽  
pp. 49-56 ◽  
Author(s):  
Seok Yoon ◽  
Seung-Rae Lee ◽  
Han-Byul Kang ◽  
Gyu-Hyun Go ◽  
Min-Jun Kim ◽  
...  

2012 ◽  
Vol 6 (1) ◽  
pp. 32-40 ◽  
Author(s):  
Zoi Sagia ◽  
Athina Stegou ◽  
Constantinos Rakopoulos

Borehole thermal resistance in Ground Heat Exchanger (GHE) installations is affected by several parameters such as geometrical attributes of heat exchanger in the borehole, pipes' characteristics and grout’s thermal conductivity. A study is carried out to compare the values computed by Ground Loop Design (GLD) Software, GLD 2009, with three ana-lytical solutions for U-shaped tubes. The analysis is focused on dimensionless ratios of borehole geometrical parameters (borehole diameter to outside pipe diameter and shank spacing to borehole diameter) and pipes according to Standard Di-mension Ratio (SDR) and on eight common grouts. Finally, the effect of heat conduction in the borehole is examined by means of finite element analysis by Heat Transfer Module of COMSOL Multiphysics. A two-dimensional (2-D) steady-state simulation is done assuming working fluid temperatures for winter and summer conditions and typical Greek undis-turbed ground temperature in a field of four ground vertical U-tube heat exchangers surrounded by infinite ground. The temperature profile is presented and the total conductive heat flux from the pipe to the borehole wall per meter of length of ground heat exchanger is computed for pipes SDR11 (the outside diameter of the pipe is 11 times the thickness of its wall), SDR9 and SDR17 for summer working conditions and three different configurations. It is attempted to reach to comparative results for borehole thermal resistance value through different types of analysis, having considered the major factors that affect it and giving trends for the influence of each factor to the magnitude of its value.


Author(s):  
Fadi A. Ghaith ◽  
Ahmed S. Izhar

This paper aims to enhance the thermal performance of an industrial shell-and-tube heat exchanger utilized for the purpose of cooling raw natural gas by means of mixture of Sales gas. The main objective of this work is to provide an optimum and reliable thermal design of a single-shelled finned tubes heat exchanger to replace the existing two- shell and tube heat exchanger due to the space limitations in the plant. A comprehensive thermal model was developed using the effectiveness-NTU method. The shell-side and tube-side overall heat transfer coefficient were determined using Bell-Delaware method and Dittus-Boelter correlation, respectively. The obtained results showed that the required area to provide a thermal duty of 1.4 MW is about 1132 m2 with tube-side and shell-side heat transfer coefficients of 950 W/m2K and 495 W/m2K, respectively. In order to verify the obtained results generated from the mathematical model, a numerical study was carried out using HTRI software which showed a good match in terms of the heat transfer area and the tube-side heat transfer coefficient.


2020 ◽  
Vol 38 (4) ◽  
pp. 845-862
Author(s):  
Saif Nawaz Ahmad ◽  
Om Prakash

Earth air tube heat exchanger (EATHE) is one of the passive technologies which utilize the earth stored heat (renewable energy) for heating/cooling the buildings. EATHE releases heat to earth for cooling space in summer, making the earth a heat sink and extracts earth-stored energy for heating space in winter and makes the earth a heat source. This paper optimizes the Length of the ground heat exchanger and overall heat transfer coefficient of earth air heat exchanger using the Taguchi technique for cooling application. For this purpose, we select six factors such as installation depth of Pipe (A), Pipe's inner diameter (B), Thermal conductivity of pipe material (C), Inlet air temperature (D), Outlet air temperature (E), Inlet air velocity (F). All these factors are taken at three levels, and we select an L27 orthogonal array for experimental runs. The ground heat exchanger's Length and the overall heat transfer coefficient were then calculated for each experimental run. In the Taguchi method, we find the signal to noise ratio for an optimal combination of all six factors and ANOVA to find the order of influencing parameters and their percentage contributions for both the objective parameters. According to our results, the best combination for all the six factors for ground heat exchanger length and overall heat transfer coefficient were A1B1C3D1E3F1 and A2B3C2D3E1F3, respectively. The highest and lowest influencing factors for ground heat exchanger length were the pipe's inner diameter and the pipe's installation depth with their contribution factors of 69.12 and 0.32%, respectively. In contrast, the highest and lowest influencing factors for the overall heat transfer coefficient were the pipe's inner diameter and thermal conductivity of pipe material with their contribution factors of 75.97and 0%, respectively. Hence the order of influence of all the six factors for both the objective parameters was BEFDCA.


2020 ◽  
Vol 147 ◽  
pp. 2399-2408 ◽  
Author(s):  
Changxing Zhang ◽  
Xinjie Wang ◽  
Pengkun Sun ◽  
Xiangqiang Kong ◽  
Shicai Sun

Sign in / Sign up

Export Citation Format

Share Document