scholarly journals Naturally Ventilated Double Skin Façades: Comparisons Between Different CFD Models

2021 ◽  
Vol 8 (6) ◽  
pp. 837-846
Author(s):  
Camilla Lops ◽  
Nicola Germano ◽  
Alessandro Ricciutelli ◽  
Valerio D’Alessandro ◽  
Sergio Montelpare

Double Skin Façades (DSFs) have become widespread solutions commonly employed in new and existing buildings in the last decades. Since its introduction, the multi-layered façade has improved profoundly, assuming more articulate and complex shapes for better energy performances and combining advanced technologies as innovative materials or systems. However, the effectiveness and the thermal behaviour of DSFs should be carefully evaluated since the design phase by selecting proper methodologies, thus avoiding inaccurate results. In fact, the correct estimation of the airflows inside DSF channels is heavily influenced by the simulation settings. Furthermore, the lack of measurements or empirical validations in the field is the primary source of concern for researchers. Considering the available numerical methods for investigating DSFs, Computational Fluid Dynamics (CFD) simulations have proven to be the most appropriate option. The present work compares multiple Double Skin Façade configurations by performing CFD analyses and adopting different turbulence models in bi- and three-dimensional domains. The results underline the capability of 2D models in predicting the fluxes inside the DSF channel and in the domain. Furthermore, comparisons among the velocity profiles estimated by adopting different turbulence formulations highlight only slight variations, especially in proximity to the perturbated areas of the cavity.

2021 ◽  
Vol 65 (2-4) ◽  
pp. 330-336
Author(s):  
Camilla Lops ◽  
Nicola Germano ◽  
Sabino Matera ◽  
Valerio D’Alessandro ◽  
Sergio Montelpare

Nowadays, Double Skin Façades (DSFs) are popular technologies adopted for both new and existing buildings. Since their introduction, new configurations and materials started to be tested to improve the DSF energy behaviour and function. Such complex technologies, able to improve comfort conditions of occupied spaces and decrease building energy requirement, are strictly related to the design phase that should be carefully evaluated. The correct prediction of air fluxes inside the DSF cavity, in fact, is highly influenced by the adopted analysis hypothesis and settings. Moreover, the absence of multiple experimental campaigns and empirical validations in the sector represents the major concerns for scientists and researchers. Among the possible numerical approaches for studying DSFs, Computational Fluid Dynamics (CFD) analyses confirm to be the most suitable solution. The CFD modelling activity presented in this paper intends to compare various Double Façade configurations by adopting bi- and three-dimensional domains and different turbulence models. According to the obtained results, 2D simulations can predict airflows inside and around the DSF channel with good approximation and reasonable computational effort. Moreover, the velocity profiles estimated by the turbulence formulations are in good accordance, underling only a few slight variations in proximity to the DSF layers.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Olivier Petit ◽  
Håkan Nilsson

Computational fluid dynamics (CFD) analyses were made to study the unsteady three-dimensional turbulence in the ERCOFTAC centrifugal pump test case. The simulations were carried out using the OpenFOAM Open Source CFD software. The test case consists of an unshrouded centrifugal impeller with seven blades and a radial vaned diffuser with 12 vanes. A large number of measurements are available in the radial gap between the impeller and the diffuse, making this case ideal for validating numerical methods. Results of steady and unsteady calculations of the flow in the pump are compared with the experimental ones, and four different turbulent models are analyzed. The steady simulation uses the frozen rotor concept, while the unsteady simulation uses a fully resolved sliding grid approach. The comparisons show that the unsteady numerical results accurately predict the unsteadiness of the flow, demonstrating the validity and applicability of that methodology for unsteady incompressible turbomachinery flow computations. The steady approach is less accurate, with an unphysical advection of the impeller wakes, but accurate enough for a crude approximation. The different turbulence models predict the flow at the same level of accuracy, with slightly different results.


Author(s):  
Kasem Eid Ragab ◽  
Lamyaa El-Gabry

Abstract In the current study, a numerical analysis was performed for the heat transfer over the surface of nozzle guide vanes (NGVs) using three-dimensional computational fluid dynamics (CFD) models. The investigation has taken place in two stages: the baseline nonfilm-cooled NGV and the film-cooled NGV. A finite volume based commercial code was used to build and analyze the CFD models. The investigated annular cascade has no heat transfer measurements available; hence in order to validate the CFD models against experimental data, two standalone studies were carried out on the NASA C3X vanes, one on the nonfilm-cooled C3X vane and the other on the film-cooled C3X vane. Different modeling parameters were investigated including turbulence models in order to obtain good agreement with the C3X experimental data; the same parameters were used afterward to model the industrial NGVs.


2011 ◽  
Vol 134 (3) ◽  
Author(s):  
Umesh Javiya ◽  
John W. Chew ◽  
Nicholas J. Hills ◽  
Leisheng Zhou ◽  
Mike Wilson ◽  
...  

The accuracy of computational fluid dynamics (CFD) for the prediction of flow and heat transfer in a direct transfer preswirl system is assessed through a comparison of CFD results with experimental measurements. Axisymmetric and three-dimensional (3D) sector CFD models are considered. In the 3D sector models, the preswirl nozzles or receiver holes are represented as axisymmetric slots so that steady state solutions can be assumed. A number of commonly used turbulence models are tested in three different CFD codes, which were able to capture all of the significant features of the experiments. A reasonable quantitative agreement with experimental data for static pressure, total pressure, and disk heat transfer is found for the different models, but all models gave results that differ from the experimental data in some respect. The more detailed 3D geometry did not significantly improve the comparison with experiment, which suggests deficiencies in the turbulence modeling, particularly in the complex mixing region near the preswirl nozzle jets. The predicted heat transfer near the receiver holes was also shown to be sensitive to near-wall turbulence modeling. Overall, the results are encouraging for the careful use of CFD in preswirl-system design.


Author(s):  
Umesh Javiya ◽  
John Chew ◽  
Nick Hills ◽  
Leisheng Zhou ◽  
Mike Wilson ◽  
...  

The accuracy of computational fluid dynamics (CFD) for the prediction of flow and heat transfer in a direct transfer pre-swirl system is assessed through a comparison of CFD results with experimental measurements. Axisymmetric and three dimensional (3D) sector CFD models are considered. In the 3D sector models, the pre-swirl nozzles or receiver holes are represented as axisymmetric slots so that steady state solutions can be assumed. A number of commonly used turbulence models are tested in three different CFD codes, which were able to capture all of the significant features of the experiments. Reasonable quantitative agreement with experimental data for static pressure, total pressure and disc heat transfer is found for the different models, but all models gave results which differ from the experimental data in some respect. The more detailed 3D geometry did not significantly improve the comparison with experiment, which suggested deficiencies in the turbulence modelling, particularly in the complex mixing region near the pre-swirl nozzle jets. The predicted heat transfer near the receiver holes was also shown to be sensitive to near-wall turbulence modelling. Overall, the results are encouraging for the careful use of CFD in pre-swirl-system design.


Author(s):  
Ahmed M Nagib Elmekawy ◽  
Hassan A Hassan Saeed ◽  
Sadek Z Kassab

Three-dimensional CFD simulations are carried out to study the increase of power generated from Savonius vertical axis wind turbines by modifying the blade shape and blade angel of twist. Twisting angle of the classical blade are varied and several proposed novel blade shapes are introduced to enhance the performance of the wind turbine. CFD simulations have been performed using sliding mesh technique of ANSYS software. Four turbulence models; realizable k -[Formula: see text], standard k - [Formula: see text], SST transition and SST k -[Formula: see text] are utilized in the simulations. The blade twisting angle has been modified for the proposed dimensions and wind speed. The introduced novel blade increased the power generated compared to the classical shapes. The two proposed novel blades achieved better power coefficients. One of the proposed models achieved an increase of 31% and the other one achieved 32.2% when compared to the classical rotor shape. The optimum twist angel for the two proposed models achieved 5.66% and 5.69% when compared with zero angle of twist.


2021 ◽  
pp. 105678952110286
Author(s):  
H Zhang ◽  
J Woody Ju ◽  
WL Zhu ◽  
KY Yuan

In a recent companion paper, a three-dimensional isotropic elastic micromechanical framework was developed to predict the mechanical behaviors of the innovative asphalt patching materials reinforced with a high-toughness, low-viscosity nanomolecular resin, dicyclopentadiene (DCPD), under the splitting tension test (ASTM D6931). By taking advantage of the previously proposed isotropic elastic-damage framework and considering the plastic behaviors of asphalt mastic, a class of elasto-damage-plastic model, based on a continuum thermodynamic framework, is proposed within an initial elastic strain energy-based formulation to predict the behaviors of the innovative materials more accurately. Specifically, the governing damage evolution is characterized through the effective stress concept in conjunction with the hypothesis of strain equivalence; the plastic flow is introduced by means of an additive split of the stress tensor. Corresponding computational algorithms are implemented into three-dimensional finite elements numerical simulations, and the outcomes are systemically compared with suitably designed experimental results.


Author(s):  
Vijay K. Garg ◽  
Ali A. Ameri

A three-dimensional Navier-Stokes code has been used to compute the heat transfer coefficient on two film-cooled turbine blades, namely the VKI rotor with six rows of cooling holes including three rows on the shower head, and the C3X vane with nine rows of holes including five rows on the shower head. Predictions of heat transfer coefficient at the blade surface using three two-equation turbulence models, specifically, Coakley’s q-ω model, Chien’s k-ε model and Wilcox’s k-ω model with Menter’s modifications, have been compared with the experimental data of Camci and Arts (1990) for the VKI rotor, and of Hylton et al. (1988) for the C3X vane along with predictions using the Baldwin-Lomax (B-L) model taken from Garg and Gaugler (1995). It is found that for the cases considered here the two-equation models predict the blade heat transfer somewhat better than the B-L model except immediately downstream of the film-cooling holes on the suction surface of the VKI rotor, and over most of the suction surface of the C3X vane. However, all two-equation models require 40% more computer core than the B-L model for solution, and while the q-ω and k-ε models need 40% more computer time than the B-L model, the k-ω model requires at least 65% more time due to slower rate of convergence. It is found that the heat transfer coefficient exhibits a strong spanwise as well as streamwise variation for both blades and all turbulence models.


Author(s):  
Yao Tao ◽  
Xiang Fang ◽  
Michael Yit Lin Chew ◽  
Lihai Zhang ◽  
Jiyuan Tu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document