scholarly journals Fourier Cosine Series Method for Solving the Generalized Elastic Thin-walled Column Buckling Problem for Dirichlet Boundary Conditions

2019 ◽  
Vol 29 (3) ◽  
pp. 131-137
Author(s):  
Charles Ike ◽  
Hyginus Onah ◽  
Benjamin Mama ◽  
Clifford Nwoji ◽  
Edwin Ikwueze
Author(s):  
Chein-Shan Liu ◽  
Chih-Wen Chang

Abstract In the paper, we point out a drawback of the Fourier sine series method to represent a given odd function, where the boundary Gibbs phenomena would occur when the boundary values of the function are non-zero. We modify the Fourier sine series method by considering the consistent conditions on the boundaries, which can improve the accuracy near the boundaries. The modifications are extended to the Fourier cosine series and the Fourier series. Then, novel boundary consistent methods are developed to solve the 1D and 2D heat equations. Numerical examples confirm the accuracy of the boundary consistent methods, accounting for the non-zeros of the source terms and considering the consistency of heat equations on the boundaries, which can not only overcome the near boundary errors but also improve the accuracy of solution about four orders in the entire domain, upon comparing to the conventional Fourier sine series method and Duhamel’s principle.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3820
Author(s):  
Chiung-Shiann Huang ◽  
S. H. Huang

This study aimed to develop series analytical solutions based on the Mindlin plate theory for the free vibrations of functionally graded material (FGM) rectangular plates. The material properties of FGM rectangular plates are assumed to vary along their thickness, and the volume fractions of the plate constituents are defined by a simple power-law function. The series solutions consist of the Fourier cosine series and auxiliary functions of polynomials. The series solutions were established by satisfying governing equations and boundary conditions in the expanded space of the Fourier cosine series. The proposed solutions were validated through comprehensive convergence studies on the first six vibration frequencies of square plates under four combinations of boundary conditions and through comparison of the obtained convergent results with those in the literature. The convergence studies indicated that the solutions obtained for different modes could converge from the upper or lower bounds to the exact values or in an oscillatory manner. The present solutions were further employed to determine the first six vibration frequencies of FGM rectangular plates with various aspect ratios, thickness-to-width ratios, distributions of material properties and combinations of boundary conditions.


2017 ◽  
Vol 2017 ◽  
pp. 1-23 ◽  
Author(s):  
Dongyan Shi ◽  
Hong Zhang ◽  
Qingshan Wang ◽  
Shuai Zha

An improved Fourier series method (IFSM) is applied to study the free and forced vibration characteristics of the moderately thick laminated composite rectangular plates on the elastic Winkler or Pasternak foundations which have elastic uniform supports and multipoints supports. The formulation is based on the first-order shear deformation theory (FSDT) and combined with artificial virtual spring technology and the plate-foundation interaction by establishing the two-parameter foundation model. Under the framework of this paper, the displacement and rotation functions are expressed as a double Fourier cosine series and two supplementary functions which have no relations to boundary conditions. The Rayleigh-Ritz technique is applied to solve all the series expansion coefficients. The accuracy of the results obtained by the present method is validated by being compared with the results of literatures and Finite Element Method (FEM). In this paper, some results are obtained by analyzing the varying parameters, such as different boundary conditions, the number of layers and points, the spring stiffness parameters, and foundation parameters, which can provide a benchmark for the future research.


2016 ◽  
Vol 16 (10) ◽  
pp. 1550069 ◽  
Author(s):  
Lingzhi Wang ◽  
Zhitao Yan ◽  
Zhengliang Li ◽  
Zhimiao Yan

In engineering practice, a massive machine may be placed on a plate supported by beams considered as elastic boundary conditions. The vibration of the plate due to the periodic excitation of the massive machine will cause noises or damages to the building in which the machine is housed. An analytical approach for the vibration analysis of a rectangular plate carrying a massive machine with uniform elastic supports is presented. The machine is simplified as a distributed mass. The transverse plate displacement is determined by the superposition of a two-dimensional (2D) Fourier cosine series and several supplementary functions. All the unknown Fourier coefficients are calculated directly from the Rayleigh–Ritz formulation. To validate the present approach, several numerical examples with classical boundary conditions are presented. The results reveal good agreement between the analytical results and those based on the finite element analysis (ANSYS). The effects of the plate size, location of the machine, and support stiffness on the modal, and transient response of the plate are investigated. From the results it is found that the transient displacement amplitude of the plate decreases almost linearly as the thickness increases, it increases nonlinearly along with the increase in the support stiffness, and that the optimal position for deploying the transformer is the center of the plate.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Eva Llabrés

Abstract We find the most general solution to Chern-Simons AdS3 gravity in Fefferman-Graham gauge. The connections are equivalent to geometries that have a non-trivial curved boundary, characterized by a 2-dimensional vielbein and a spin connection. We define a variational principle for Dirichlet boundary conditions and find the boundary stress tensor in the Chern-Simons formalism. Using this variational principle as the departure point, we show how to treat other choices of boundary conditions in this formalism, such as, including the mixed boundary conditions corresponding to a $$ T\overline{T} $$ T T ¯ -deformation.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Adrien Fiorucci ◽  
Romain Ruzziconi

Abstract The gravitational charge algebra of generic asymptotically locally (A)dS spacetimes is derived in n dimensions. The analysis is performed in the Starobinsky/Fefferman-Graham gauge, without assuming any further boundary condition than the minimal falloffs for conformal compactification. In particular, the boundary structure is allowed to fluctuate and plays the role of source yielding some symplectic flux at the boundary. Using the holographic renormalization procedure, the divergences are removed from the symplectic structure, which leads to finite expressions. The charges associated with boundary diffeomorphisms are generically non-vanishing, non-integrable and not conserved, while those associated with boundary Weyl rescalings are non-vanishing only in odd dimensions due to the presence of Weyl anomalies in the dual theory. The charge algebra exhibits a field-dependent 2-cocycle in odd dimensions. When the general framework is restricted to three-dimensional asymptotically AdS spacetimes with Dirichlet boundary conditions, the 2-cocycle reduces to the Brown-Henneaux central extension. The analysis is also specified to leaky boundary conditions in asymptotically locally (A)dS spacetimes that lead to the Λ-BMS asymptotic symmetry group. In the flat limit, the latter contracts into the BMS group in n dimensions.


2021 ◽  
pp. 104123
Author(s):  
Firdous A. Shah ◽  
Mohd Irfan ◽  
Kottakkaran S. Nisar ◽  
R.T. Matoog ◽  
Emad E. Mahmoud

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Stegliński

Abstract The aim of this paper is to extend results from [A. Cañada, J. A. Montero and S. Villegas, Lyapunov inequalities for partial differential equations, J. Funct. Anal. 237 (2006), 1, 176–193] about Lyapunov-type inequalities for linear partial differential equations to nonlinear partial differential equations with 𝑝-Laplacian with zero Neumann or Dirichlet boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document