scholarly journals Analysis of Normal and Adventitious Lung Sound Signals Using Empirical Mode Decomposition and Central Tendency Measure

2021 ◽  
Vol 38 (3) ◽  
pp. 731-738
Author(s):  
Sibghatullah I. Khan ◽  
Ganjikunta Ganesh Kumar ◽  
Pandya Vyomal Naishadkumar ◽  
Sarvade Pedda Subba Rao

Diagnosing chronic obstructive pulmonary disease (COPD) from lung sounds is time consuming, onerous, and subjective to the expertise of pulmonologists. The preliminary diagnosis of COPD is often based on adventitious lung sounds (ALS). This paper proposes to objectively analyze the lung sound signals associated with COPD. Specifically, empirical mode decomposition (EMD), a data adaptive signal decomposition technique suitable for analyzing non-stationary signals, was adopted to decompose non-stationary lung sound signals. The use of EMD on lung sound signal results in intrinsic mode functions (IMFs), which are symmetric and band limited. The analytic IMFs were then computed through the Hilbert transform, which reveals the instantaneous frequency content of each IMF. The Hilbert transformed signal is analytic, and has a complex representation containing real and imaginary parts. Next, the central tendency measure (CTM) was introduced to quantify the circular shape of the analytical IMF plot. The result was taken as a useful feature to distinguish normal lung sound signal with ALS. Simulation results show that the CTM of analytic IMFs has a strong ability to distinguish between normal lung sound signals and ALS.

Author(s):  
Du Wenliao ◽  
Guo Zhiqiang ◽  
Gong Xiaoyun ◽  
Xie Guizhong ◽  
Wang Liangwen ◽  
...  

A novel multifractal detrended fluctuation analysis based on improved empirical mode decomposition for the non-linear and non-stationary vibration signal of machinery is proposed. As the intrinsic mode functions selection and Kolmogorov–Smirnov test are utilized in the detrending procedure, the present approach is quite available for contaminated data sets. The intrinsic mode functions selection is employed to deal with the undesired intrinsic mode functions named pseudocomponents, and the two-sample Kolmogorov–Smirnov test works on each intrinsic mode function and Gaussian noise to detect the noise-like intrinsic mode functions. The proposed method is adaptive to the signal and weakens the effect of noise, which makes this approach work well for vibration signals collected from poor working conditions. We assess the performance of the proposed procedure through the classic multiplicative cascading process. For the pure simulation signal, our results agree with the theoretical results, and for the contaminated time series, the proposed method outperforms the traditional multifractal detrended fluctuation analysis methods. In addition, we analyze the vibration signals of rolling bearing with different fault types, and the presence of multifractality is confirmed.


2021 ◽  
Author(s):  
Sibghatullah I. Khan ◽  
Vikram Palodiya ◽  
Lavanya Poluboyina

Abstract Bronchiectasis and chronic obstructive pulmonary disease (COPD) are common human lung diseases. In general, the expert pulmonologistcarries preliminary screening and detection of these lung abnormalities by listening to the adventitious lung sounds. The present paper is an attempt towards the automatic detection of adventitious lung sounds ofBronchiectasis,COPD from normal lung sounds of healthy subjects. For classification of the lung sounds into a normaland adventitious category, we obtain features from phase space representation (PSR). At first, the empirical mode decomposition (EMD) is applied to lung sound signals to obtain intrinsic mode functions (IMFs). The IMFs are then further processed to construct two dimensional (2D) and three dimensional (3D) PSR. The feature space includes the 95% confidence ellipse area and interquartile range (IQR) of Euclidian distances computed from 2D and 3D PSRs, respectively. The process is carried out for the first four IMFs correspondings to normal and adventitious lung sound signals. The computed features depicta significant ability to discriminate the two categories of lung sound signals.To perform classification, we use the least square support vector machine with two kernels, namely, polynomial and radial basis function (RBF).Simulation outcomes on ICBHI 2017 lung sound dataset show the ability of the proposed method in effectively classifying normal and adventitious lung sound signals. LS-SVM is employing RBF kernel provides the highest classification accuracy of 97.67 % over feature space constituted by first, second, and fourth IMF.


2022 ◽  
Author(s):  
J.M. González-Sopeña

Abstract. In the last few years, wind power forecasting has established itself as an essential tool in the energy industry due to the increase of wind power penetration in the electric grid. This paper presents a wind power forecasting method based on ensemble empirical mode decomposition (EEMD) and deep learning. EEMD is employed to decompose wind power time series data into several intrinsic mode functions and a residual component. Afterwards, every intrinsic mode function is trained by means of a CNN-LSTM architecture. Finally, wind power forecast is obtained by adding the prediction of every component. Compared to the benchmark model, the proposed approach provides more accurate predictions for several time horizons. Furthermore, prediction intervals are modelled using quantile regression.


2019 ◽  
Vol 16 (1) ◽  
pp. 10-13 ◽  
Author(s):  
Zoltán Germán-Salló

Abstract This study explores the data-driven properties of the empirical mode decomposition (EMD) for signal denoising. EMD is an acknowledged procedure which has been widely used for non-stationary and nonlinear signal processing. The main idea of the EMD method is to decompose the analyzed signal into components without using expansion functions. This is a signal dependent representation and provides intrinsic mode functions (IMFs) as components. These are analyzed, through their Hurst exponent and if they are found being noisy components they will be partially or integrally eliminated. This study presents an EMD decomposition-based filtering procedure applied to test signals, the results are evaluated through signal to noise ratio (SNR) and mean square error (MSE). The obtained results are compared with discrete wavelet transform based filtering results.


2014 ◽  
Vol 31 (9) ◽  
pp. 1982-1994 ◽  
Author(s):  
Xiaoying Chen ◽  
Aiguo Song ◽  
Jianqing Li ◽  
Yimin Zhu ◽  
Xuejin Sun ◽  
...  

Abstract It is important to recognize the type of cloud for automatic observation by ground nephoscope. Although cloud shapes are protean, cloud textures are relatively stable and contain rich information. In this paper, a novel method is presented to extract the nephogram feature from the Hilbert spectrum of cloud images using bidimensional empirical mode decomposition (BEMD). Cloud images are first decomposed into several intrinsic mode functions (IMFs) of textural features through BEMD. The IMFs are converted from two- to one-dimensional format, and then the Hilbert–Huang transform is performed to obtain the Hilbert spectrum and the Hilbert marginal spectrum. It is shown that the Hilbert spectrum and the Hilbert marginal spectrum of different types of cloud textural images can be divided into three different frequency bands. A recognition rate of 87.5%–96.97% is achieved through random cloud image testing using this algorithm, indicating the efficiency of the proposed method for cloud nephogram.


2021 ◽  
Author(s):  
Chun-Hsiang Tang ◽  
Christina W. Tsai

<p>Abstract</p><p>Most of the time series in nature are nonlinear and nonstationary affected by climate change particularly. It is inevitable that Taiwan has also experienced frequent drought events in recent years. However, drought events are natural disasters with no clear warnings and their influences are cumulative. The difficulty of detecting and analyzing the drought phenomenon remains. To deal with the above-mentioned problem, Multi-dimensional Ensemble Empirical Mode Decomposition (MEEMD) is introduced to analyze the temperature and rainfall data from 1975~2018 in this study, which is a powerful method developed for the time-frequency analysis of nonlinear, nonstationary time series. This method can not only analyze the spatial locality and temporal locality of signals but also decompose the multiple-dimensional time series into several Intrinsic Mode Functions (IMFs). By the set of IMFs, the meaningful instantaneous frequency and the trend of the signals can be observed. Considering stochastic and deterministic influences, to enhance the accuracy this study also reconstruct IMFs into two components, stochastic and deterministic, by the coefficient of auto-correlation.</p><p>In this study, the influences of temperature and precipitation on the drought events will be discussed. Furthermore, to decrease the significant impact of drought events, this study also attempts to forecast the occurrences of drought events in the short-term via the Artificial Neural Network technique. And, based on the CMIP5 model, this study also investigates the trend and variability of drought events and warming in different climatic scenarios.</p><p> </p><p>Keywords: Multi-dimensional Ensemble Empirical Mode Decomposition (MEEMD), Intrinsic Mode Function(IMF), Drought</p>


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Liye Zhao ◽  
Wei Yu ◽  
Ruqiang Yan

This paper presents an improved gearbox fault diagnosis approach by integrating complementary ensemble empirical mode decomposition (CEEMD) with permutation entropy (PE). The presented approach identifies faults appearing in a gearbox system based on PE values calculated from selected intrinsic mode functions (IMFs) of vibration signals decomposed by CEEMD. Specifically, CEEMD is first used to decompose vibration signals characterizing various defect severities into a series of IMFs. Then, filtered vibration signals are obtained from appropriate selection of IMFs, and correlation coefficients between the filtered signal and each IMF are used as the basis for useful IMFs selection. Subsequently, PE values of those selected IMFs are utilized as input features to a support vector machine (SVM) classifier for characterizing the defect severity of a gearbox. Case study conducted on a gearbox system indicates the effectiveness of the proposed approach for identifying the gearbox faults.


2010 ◽  
Vol 40-41 ◽  
pp. 91-95 ◽  
Author(s):  
Yan Li Zhang

A method to analyze the acoustic signals collected in fully-mechanized caving face is presented in this paper. Through analyzing the marginal spectrum and frequency spectrum of intrinsic mode functions obtained by empirical mode decomposition, acoustic signals’ frequency and amplitude characteristics are gotten, that is, high frequency signals about 1000Hz ~2800Hz are produced when the top coal is combined with gangue. Furthermore, the acoustic signals’ instantaneous energy spectrums in the frequency range of 1000Hz ~2800Hz can be used to identify the coal-rock interface.


2020 ◽  
Vol 42 (2) ◽  
pp. 57-73
Author(s):  
Suya Han ◽  
Yufeng Zhang ◽  
Keyan Wu ◽  
Bingbing He ◽  
Kexin Zhang ◽  
...  

Complete and accurate separation of harmonic components from the ultrasonic radio frequency (RF) echo signals is essential to improve the quality of harmonic imaging. There are limitations in the existing two commonly used separation methods, that is, the subjectivity for the high-pass filtering (S_HPF) method and motion artifacts for the pulse inversion (S_PI) method. A novel separation method called S_CEEMDAN, based on the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) algorithm, is proposed to adaptively separate the second harmonic components for ultrasound tissue harmonic imaging. First, the ensemble size of the CEEMDAN algorithm is calculated adaptively according to the standard deviation of the added white noise. A set of intrinsic mode functions (IMFs) is then obtained by the CEEMDAN algorithm from the ultrasonic RF echo signals. According to the IMF spectra, the IMFs that contain both fundamental and harmonic components are further decomposed. The separation process is performed until all the obtained IMFs have been divided into either fundamental or harmonic categories. Finally, the fundamental and harmonic RF echo signals are obtained from the accumulations of signals from these two categories, respectively. In simulation experiments based on CREANUIS, the S_CEEMDAN-based results are similar to the S_HPF-based results, but better than the S_PI-based results. For the dynamic carotid artery measurements, the contrasts, contrast-to-noise ratios (CNRs), and tissue-to-clutter ratios (TCRs) of the harmonic images based on the S_CEEMDAN are averagely increased by 31.43% and 50.82%, 18.96% and 10.83%, as well as 34.23% and 44.18%, respectively, compared with those based on the S_HPF and S_PI methods. In conclusion, the S_CEEMDAN method provides improved harmonic images owing to its good adaptivity and lower motion artifacts, and is thus a potential alternative to the current methods for ultrasonic harmonic imaging.


Sign in / Sign up

Export Citation Format

Share Document