scholarly journals Detection of Various Types of Metal Surface Defects Based on Image Processing

2021 ◽  
Vol 38 (4) ◽  
pp. 1071-1078
Author(s):  
Peng Xue ◽  
Changhong Jiang ◽  
Huanli Pang

Machine vision is a promising technique to promote intelligent production. It strikes a balance between product quality and production efficiency. However, the existing metal surface defect detection algorithms are too general, and deviate from electrical production equipment in the level of response time to the target image. To address the two problems, this paper designs a detection algorithm for various types of metal surface defects based on image processing. Firstly, each metal surface image was preprocessed through average graying and nonlocal means filtering. Next, the principle of the composite model scale expansion was explained, and an improved EfficientNet was constructed to classify metal surface defects, which couples spatial attention mechanism. Finally, the backbone network of the single shot multi-box detector (SSD) network was improved, and used to fuse the features of the target image. The proposed model was proved effective through experiments.

2018 ◽  
Vol 8 (9) ◽  
pp. 1678 ◽  
Author(s):  
Yiting Li ◽  
Haisong Huang ◽  
Qingsheng Xie ◽  
Liguo Yao ◽  
Qipeng Chen

This paper aims to achieve real-time and accurate detection of surface defects by using a deep learning method. For this purpose, the Single Shot MultiBox Detector (SSD) network was adopted as the meta structure and combined with the base convolution neural network (CNN) MobileNet into the MobileNet-SSD. Then, a detection method for surface defects was proposed based on the MobileNet-SSD. Specifically, the structure of the SSD was optimized without sacrificing its accuracy, and the network structure and parameters were adjusted to streamline the detection model. The proposed method was applied to the detection of typical defects like breaches, dents, burrs and abrasions on the sealing surface of a container in the filling line. The results show that our method can automatically detect surface defects more accurately and rapidly than lightweight network methods and traditional machine learning methods. The research results shed new light on defect detection in actual industrial scenarios.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Bin Zhang ◽  
Shuqi Fang ◽  
Zhixi Li

In order to overcome the limitation of manual visual inspection of surface defects of rare-earth magnetic materials and increase production efficiency of traditional rare-earth enterprises, a detection method based on improved SSD (Single Shot Detector) is proposed. The SSD model is improved from two aspects for better performance in the detection of small defects. First of all, the multiscale receptive field module is embedded into the backbone network of the algorithm to improve the feature extraction ability of the model. Secondly, the interlayer feature fusion strategy of bidirectional feature pyramid in PANet (path aggregation network) is integrated into the model. In order to enhance the detection ability of the model, the high-level semantic information is strengthened by an efficient channel attention mechanism. The detection speed of the improved SSD algorithm is 55FPS, and the mAP (mean Average Precision) is up to 83.65%, which is 3.41% higher than of the original SSD algorithm, and the ability to identify small defects is significantly improved.


2021 ◽  
pp. 1-18
Author(s):  
Hui Liu ◽  
Boxia He ◽  
Yong He ◽  
Xiaotian Tao

The existing seal ring surface defect detection methods for aerospace applications have the problems of low detection efficiency, strong specificity, large fine-grained classification errors, and unstable detection results. Considering these problems, a fine-grained seal ring surface defect detection algorithm for aerospace applications is proposed. Based on analysis of the stacking process of standard convolution, heat maps of original pixels in the receptive field participating in the convolution operation are quantified and generated. According to the generated heat map, the feature extraction optimization method of convolution combinations with different dilation rates is proposed, and an efficient convolution feature extraction network containing three kinds of dilated convolutions is designed. Combined with the O-ring surface defect features, a multiscale defect detection network is designed. Before the head of multiscale classification and position regression, feature fusion tree modules are added to ensure the reuse and compression of the responsive features of different receptive fields on the same scale feature maps. Experimental results show that on the O-rings-3000 testing dataset, the mean condition accuracy of the proposed algorithm reaches 95.10% for 5 types of surface defects of aerospace O-rings. Compared with RefineDet, the mean condition accuracy of the proposed algorithm is only reduced by 1.79%, while the parameters and FLOPs are reduced by 35.29% and 64.90%, respectively. Moreover, the proposed algorithm has good adaptability to image blur and light changes caused by the cutting of imaging hardware, thus saving the cost.


Author(s):  
Ihor Konovalenko ◽  
Pavlo Maruschak ◽  
Vitaly Brevus

Abstract Steel defect diagnostics is important for industry task as it is tied to the product quality and production efficiency. The aim of this paper is evaluating the application of residual neural networks for recognition of industrial steel defects of three classes. Developed and investigated models based on deep residual neural networks for the recognition and classification of surface defects of rolled steel. Investigated the influence of various loss functions, optimizers and hyperparameters on the obtained result and selected optimal model parameters. Based on an ensemble of two deep residual neural networks ResNet50 and ResNet152, a classifier was constructed to detect defects of three classes on flat metal surfaces. The proposed technique allows classifying images with high accuracy. The average binary accuracy of classifying the test data is 96.7% for all images (including defect-free ones). The fields of neuron activation in the convolutional layers of the model were investigated. Feature maps formed in the process were found to reflect the position, size and shape of the objects of interest very well. The proposed ensemble model has proven to be robust and able to accurately recognize steel surface defects. Erroneous recognition cases of the classifier application are investigated. It was shown that errors most often occur in ambiguous situations, where surface artifacts of different types are similar.


2016 ◽  
Vol 836 ◽  
pp. 147-152
Author(s):  
Akhmad Faizin ◽  
Arif Wahjudi ◽  
I. Made Londen Batan ◽  
Agus Sigit Pramono

The quality of product of manufacturing industries depends on dimension accurately and surface roughness quality. There are many types of surface defects and levels of surface roughness quality. Ironing process is one type of metal forming process, which aims to reduce the wall thickness of the cup-shaped or pipes products, thus increasing the height of the wall. Manually surface inspection procedures are very inadequate to ensure the surface in guaranteed quality. To ensure strict requirements of customers, the surface defect inspection based on image processing techniques has been found to be very effective and popular over the last two decades. The paper has been reviewed some papers based on image processing for defect detection. It has been tried to find some alternatives of useful methods for product surface defect detection of ironing process.


2012 ◽  
Vol 482-484 ◽  
pp. 1773-1776
Author(s):  
Xuan Wang ◽  
Wei Liu ◽  
Hui Cao ◽  
Dong Ping Ma

Steel surface defect detection is the key point of this research. The paper mainly focuses on the image processing and image feature extraction of the steel plate surface. The paper also focuses on the calculating procedure and results of the fractal dimension in different defects images. It can be concluded from the results of the study, fractal dimension of the defect images becomes an important feature of the steel plate surface image pattern recognition.


2019 ◽  
Vol 7 (4.14) ◽  
pp. 401
Author(s):  
Ze-Hao Wong ◽  
C. M. Thong ◽  
W. M. Edmund Loh ◽  
C. J. Wong

Surface defects in manufacturing are top challenges in various manufacturing field including LED manufacturing, die manufacturing and printing industry. Quality control through automated surface defect detection has been an emphasis to speed up the production without jeopardizing the quality of the product. However, complexity and flexibility in product design, specification and dataset availability posted challenges in existing referential-based algorithm. Golden template-based algorithms are sensitive to misalignment and product variations. Deep learning and its variant can be used as non-linear filter to segment anomalies area. However, deep learning requires huge labelled database and consume long learning time. Similarly, maximum likelihood-based algorithms require large database for learning. This research proposes a novel histogram distance based multiple templates anomalies detection (MTAD) algorithm to segment surface defect. Histogram distance based on kernel-wise histograms stacked across illumination normalized database of similar size can describe the degree of anomaly intuitively across the image. Then, surface defect can be justified intuitively according to anomaly heat map generated. The algorithm is tested against industrial samples and it can handle texture and design variation existed in the product while catching anomaly in real time. This research suggests future studies on extending dimensionality of the histogram. Suggested algorithm has wide range of application other than surface defect detection. For examples, video motion detection, decolorization detection on industrial lighting.  


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ziyu Zhao ◽  
Xiaoxia Yang ◽  
Yucheng Zhou ◽  
Qinqian Sun ◽  
Zhedong Ge ◽  
...  

AbstractParticleboard surface defect detection technology is of great significance to the automation of particleboard detection, but the current detection technology has disadvantages such as low accuracy and poor real-time performance. Therefore, this paper proposes an improved lightweight detection method of You Only Live Once v5 (YOLOv5), namely PB-YOLOv5 (Particle Board-YOLOv5). Firstly, the gamma-ray transform method and the image difference method are combined to deal with the uneven illumination of the acquired images, so that the uneven illumination is well corrected. Secondly, Ghost Bottleneck lightweight deep convolution module is added to Backbone module and Neck module of YOLOv5 detection algorithm to reduce model volume. Thirdly, the SELayer module of attention mechanism is added into Backbone module. Finally, replace Conv in Neck module with depthwise convolution (DWConv) to compress network parameters. The experimental results show that the PB-YOLOv5 model proposed in this paper can accurately identify five types of defects on the particleboard surface: Bigshavings, SandLeakage, GlueSpot, Soft and OliPollution, and meet the real-time requirements. Specifically, recall, F1 score, [email protected], [email protected]:.95 values of pB-Yolov5s model were 91.22%, 94.5%, 92.1%, 92.8% and 67.8%, respectively. The results of Soft defects were 92.8%, 97.9%, 95.3%, 99.0% and 81.7%, respectively. The detection of single image time of the model is only 0.031 s, and the weight size of the model is only 5.4 MB. Compared with the original YOLOv5s, YOLOv4, YOLOv3 and Faster RCNN, the PB-Yolov5s model has the fastest Detection of single image time. The Detection of single image time was accelerated by 34.0%, 55.1%, 64.4% and 87.9%, and the weight size of the model is compressed by 62.5%, 97.7%, 97.8% and 98.9%, respectively. The mAP value increased by 2.3%, 4.69%, 7.98% and 13.05%, respectively. The results show that the PB-YOLOV5 model proposed in this paper can realize the rapid and accurate detection of particleboard surface defects, and fully meet the requirements of lightweight embedded model.


Author(s):  
Zhenying Xu ◽  
Ziqian Wu ◽  
Wei Fan

Defect detection of electromagnetic luminescence (EL) cells is the core step in the production and preparation of solar cell modules to ensure conversion efficiency and long service life of batteries. However, due to the lack of feature extraction capability for small feature defects, the traditional single shot multibox detector (SSD) algorithm performs not well in EL defect detection with high accuracy. Consequently, an improved SSD algorithm with modification in feature fusion in the framework of deep learning is proposed to improve the recognition rate of EL multi-class defects. A dataset containing images with four different types of defects through rotation, denoising, and binarization is established for the EL. The proposed algorithm can greatly improve the detection accuracy of the small-scale defect with the idea of feature pyramid networks. An experimental study on the detection of the EL defects shows the effectiveness of the proposed algorithm. Moreover, a comparison study shows the proposed method outperforms other traditional detection methods, such as the SIFT, Faster R-CNN, and YOLOv3, in detecting the EL defect.


Sign in / Sign up

Export Citation Format

Share Document