scholarly journals Biocontrol of Rhizoctonia solani Root Rot of Chilli by Bacillus subtilis formulations under Pot Conditions

2016 ◽  
Vol 30 (2) ◽  
pp. 109 ◽  
Author(s):  
Ashwini Narasimhan ◽  
Srividya Shivakumar

The chilli crop suffers massive yield loss due to root rot caused by <em>Rhizoctonia solani</em>. An increase of 10 × 10<sup>5</sup> root colonizing units/cm was obtained as a result of <em>Bacillus subtilis</em> in vitro root colonisation assay post germination. Shelf life studies of the formulations revealed stable population level of the biocontrol agent upto 180<sup>th</sup> day (30°C - 1.6 × 10<sup>8</sup>; 4°C - 1.9 × 10<sup>8</sup>) in talc and upto 150<sup>th</sup> day in lignite (30°C - 1.5 × 10<sup>8</sup>; 4°C - 1.3 × 10<sup>8</sup>). Soil, seed, foliar spray and dip treatment methods of <em>B. subtilis</em> and chlorothalonil brought about a considerable enhancement of all biometric parameters and reduced disease incidence compared to the untreated control. In comparison to the untreated control (50 g and 21 g fresh and dry weight, respectively), highest plant fresh weight (76.84 g) and dry weight (34.17 g) was achieved by the Seed application method. Comparison of plant height revealed maximum values 70 cm (soil application) and 77 cm (dip treatment) with <em>B. subtilis</em> application which was analogous to chlorothalonil treatment (56.5 cm with soil application and 70.33 cm with dip treatment) which was considerably superior to the untreated control (58.2 cm with dip treatment and 61 cm with soil application, respectively). Root dip treatment showed considerable increase in root length with <em>B. subtilis</em> (33 cm) and chlorothalonil (28.5 cm) when compared to untreated control (15 cm). Growth promotion was better with Root dip application while disease control was achieved better with seed application. A 66% and 84% reduction in incitation of disease was noticed with soil and seed application methods, respectively.

Author(s):  
S. L. Godara ◽  
Narendra . Singh

Root rot caused by Rhizoctonia solani is an important disease of mothbean, under severe infestation it causes 58-68 % losses in grain yield. Three-year field experiments were conducted in hot arid conditions at Bikaner, Rajasthan during kharif seasons with the objective to find out suitable eco-friendly management strategies for root rot. The experiment was conducted on cv. RMO-225 with six different combination of Trichoderma harzianum + Pseudomonas fluorescens bio- agents viz, seed treatment, soil treatment and their combinations against the root rot disease and compared with an untreated control. Results of experiment showed that all the treatments brought significant decline in disease incidence and consequently enhancement of grain yield compared to control. The treatment having combination of Trichoderma harzianum + Pseudomonas fluorescens seed treatment (4+4 g/kg seed) + soil application of T. harzianum + P. fluorescens (1.25 +1.25 kg in 50 kg FYM for each/ha) had minimum (21.78 %) root rot incidence, highest grain yield (10.56 q /ha) and net return (Rs. 14,338/ha). The T. harzianum seed treatment 8 g/kg seed + soil application of T. harzianum 2.5kg in 100 kg FYM/ha was the next best treatment with 25.56 per cent disease incidence and 9.42 q/ha of grain yield. These treatments can provide an effective, economical and eco- friendly management of root rot of mothbean for cultivators.


2019 ◽  
Vol 29 (1) ◽  
Author(s):  
Manzoor R. Khan ◽  
Zaki A. Siddiqui

AbstractEffects of Pseudomonas putida and Bacillus subtilis alone, and in combinations for the management of Meloidogyne incognita, Pectobacterium betavasculorum, and Rhizoctonia solani disease complex of beetroot (Beta vulgaris L.), were studied. Application of P. putida or B. subtilis to plants with M. incognita or P. betavasculorum or R. solani singly or in combinations caused a significant increase in plant growth parameters and the activities of defense enzymes. A significant increase in chlorophyll fluorescence attributes, viz., Fv/Fm, ɸPSII, qP, NPQ, and ETR were recorded in plants treated with P. putida or B. subtilis over pathogen-inoculated plants. Inoculation of P. putida results in a higher reduction in galling and nematode multiplication than B. subtilis. Maximum reduction in nematode multiplication and galling occurred when a mixture of P. putida and B. subtilis was used. Soft rot and root rot indices were 3 when Pectobacterium betavasculorum and Rhizoctonia solani were inoculated alone. The disease indices were rated 5 when these pathogens and M. incognita were inoculated in combinations. Inoculation of P. putida/B. subtilis with P. betavasculorum or R. solani reduced soft rot and root rot indices to 2 out of 3, while the use of P. putida + B. subtilis reduced indices to 1. Disease indices were reduced to 2–3 out of 5, when P. putida + B. subtilis were used to plants inoculated with two or three pathogens. The principal component analysis showed significant correlations among the various studied attributes. Two principal components explained a total of 86.1 and 93.4% of the overall data variability. Therefore, the use of P. putida together with B. subtilis had the potential for successful management of disease complex of beetroot.


2020 ◽  
Vol 8 (4) ◽  
pp. 496
Author(s):  
Dilfuza Egamberdieva ◽  
Vyacheslav Shurigin ◽  
Burak Alaylar ◽  
Hua Ma ◽  
Marina E. H. Müller ◽  
...  

The effects of biochar on plant growth vary depending on the applied biochar type, study site environmental conditions, microbial species, and plant–microbial interactions. The objectives of the present study were therefore to assess 1) the response of growth parameters of lupin and root disease incidence to the application of three biochar types in a loamy sandy soil, and 2) the role of endophytic bacteria in biological control of root rot disease incidence in lupin after the amendment of soil with different biochar types. As biochar types we tested (i) hydrochar (HTC) from maize silage, (ii) pyrolysis char from maize (MBC), and (iii) pyrolysis char from wood (WBC) at three different concentrations (1%, 2%, and 3% of char as soil amendments). There were no significant effects in lupin shoot and root growth in soils amended with WBC at any of the concentrations. MBC did not affect plant growth except for root dry weight at 2% MBC. HTC char at 2% concentration, significantly increased the root dry weight of lupin by 54–75%, and shoot dry weight by 21–25%. Lupin plants grown in soil amended with 2% and 3% WBC and MBC chars showed 40–50% and 10–20% disease symptoms, respectively. Plants grown in soil without biochar and with HTC char were healthy, and no disease incidence occurred. Pseudomonas putida L2 and Stenotrophomonas pavanii L8 isolates demonstrated a disease reduction compared to un-inoculated plants under MBC and WBC amended soil that was infested with Fusarium solani.


Author(s):  
Mohit . Kumar ◽  
Data Ram Kumhar ◽  
Ashok Kumar Meena ◽  
Kiran . Choudhary

Bio-control agents and bio-fertilizer minimized the root rot incidence, increased percent inhibition, increased grain yield and nodulation in mungbean significantly as compared to control. The minimum 13.50% disease incidence, maximum 79.23% inhibition of dry root rot, maximum grain yield of 14.8q/ha and maximum 24 nodules/plant were observed in the treatment T13. Where T. harzianum in combination with Rhizobium was used as seed treatment and soil application followed by the treatment(T14) where P. fluorescens was used in combination with Rhizobium (18.50% disease incidence, 71.54% disease inhibition,13.4q/ha grain yield and 21 nodules/plant. used as seed treatment and soil application.


Plant Disease ◽  
2021 ◽  
Author(s):  
S. K. Paul ◽  
Dipali Rani Gupta ◽  
Nur Uddin Mahmud ◽  
A.N.M. Muzahid ◽  
Tofazzal Islam

Faba bean (Vicia faba L.) is an underutilized promising grain legume commercially grown in central and northern part of Bangladesh (Yasmin et al. 2020). In January 2021, faba bean plants exhibiting symptoms of collar and root rot and yellowing of leaves were observed in thirty plots of an experimental field at the Bangladesh Agricultural University (24.75° N, 90.50° E), Mymensingh, Bangladesh. Infected plants had dark brown to black lesions on the roots, extending above the collar region. An average disease incidence and severity was 7.16% and 6.91%, respectively. Eight diseased plants were collected from the field by uprooting one plant from each of eight randomly selected experimental plots and surface disinfected with sodium hypochlorite (0.2%) for 3 min followed by 1 min in ethanol (70%), and then rinsed three times with distilled water and dried on sterile paper towels. Collar and root pieces (5×5 mm) of symptomatic tissues were placed on Potato Dextrose Agar (PDA). Plates were incubated at 25°C for three days and isolates were purified from single-tip culture. The isolates produced brown colored mycelia often with brown sclerotia. Under microscope, fungal colonies exhibited right–angled branching with constriction at the base of hyphal branches and a septum near the originating point of hyphal branch consistent with the description of Rhizoctonia solani Kuhn (Sneh et al. 1991). The isolates grew at 35°C on PDA (5 mm/24). Molecular identification of the isolates BTRFB1 and BTRFB7 was determined by sequencing the rDNA internal transcribed spacer (ITS) region using primers ITS1 and ITS4 (White et al. 1990). A BLAST search showed that the sequences (GenBank Accession nos. MZ158299.1 and MZ158298.1) had 99.28% similarity with R. solani isolates Y1063 and SX-RSD1 (GenBank Accession nos. JX913811.1 and KC413984.1, respectively). Phylogenetic analysis revealed that the present isolates grouped with R. solani anastomosis group AG-2-2 IIIB. To confirm pathogenicity, both isolates were grown individually on sterile wheat kernels at 28°C for 6 days (D’aes et al. 2011). Faba bean seedlings were grown in plastic pots containing sterile potting mix (field soil/composted manure/sand 2:2:1 [v/v]). Two-week-old plants were inoculated by placing five infested wheat seeds adjacent to the roots. Control pots were inoculated with sterile wheat kernels using the same procedure. Plants were placed in a growth room with a 16 h/8 h light/dark photoperiod at 25 ± 2°C after inoculation. Fifteen days after inoculation, typical collar and root rot symptoms were developed on inoculated plants, similar to symptoms observed in the field. Control plants remained non-symptomatic. Finally, six isolates of R. solani were isolated from the symptomatic plants and identified by morphological and molecular analysis. Rhizoctonia solani is the causal agent of seed and root rot, hypocotyl canker, and seedling damping-off diseases of faba bean in many other countries (Rashid and Bernier 1993; Assunção et al. 2011). To our knowledge, this is the first confirmed report of Rhizoctonia solani causing collar and root rot of faba bean in Bangladesh. This finding will be helpful for the development of management strategies to control this disease and to expand the production of faba bean in Bangladesh.


2017 ◽  
Vol 10 (2) ◽  
pp. 70-79
Author(s):  
A.I. Darras ◽  
A. Kotsiras ◽  
C. Delis ◽  
K. Nifakos ◽  
E. Pavlakos ◽  
...  

SummaryPlants have to cope with a number of biotic stresses among which, infectious diseases. The present study was conducted to investigate the reaction of two native Greek tomato vars, ‘Chondrokatsari Messinias’ and ‘Katsari Santorinis’, to infection by Fusarium oxysporum f. sp. lycopersici and Rhizoctonia solani. Disease symptoms, disease incidence and severity were recorded and the effects of infection on the number of flowers, the biomass production (fresh and dry weight), CO2assimilation, stomatal conductance and transpiration were also evaluated. Both tomato varieties were susceptible to F. oxysporum f. sp. lycopersici and R. solani infection. However, ‘Chondrokatsari Messinias’ was found to be less susceptible to F. oxysporum f. sp. lycopersici compared to ‘Katsari Santorinis’. Both pathogens negatively affected biomass production of var. ‘Chondrokatsari Messinias’ but not that of ‘Katsari Santorinis’. The number of fl owers produced by ‘Chondrokatsari Messinias’ was negatively affected by R. solani but not by F. oxysporum f. sp. lycopersici. Infection of both varieties by R. solani also caused reduction in the CO2assimilation, stomatal conductance and transpiration.


2018 ◽  
Vol 28 (4) ◽  
pp. 287-294
Author(s):  
MS Islam ◽  
H Akter ◽  
S Aktar ◽  
MJ Miah ◽  
M Farazi

A pot experiment was conducted at the Bangladesh Institute of Nuclear Agriculture, Mymensingh during the period from November 2013 to March 2014 to examine the effect of nitrogen application methods on the growth and yield of wheat. Two application methods (Foliar spray and soil application) and three varieties viz. Sotabdi, Kanchan and BAW56 were included and experimental test crop. From the study it was found that plant height. Total tillers plant-1,effect tillers plant-1,root dry weight plant-1,grains panicle-1, 100 grain weight, grain weight plant-1, straw weight plant-1, biological yield plant-1, and harvest indexwere significantly higher by foliar spray method than the soil application of nitrogen, Higher grain yield (9.01 g plant-1) was observed by the foliar spray application and lower grain yield was 6.07 g plant-1 obtained from the soil application. Among 3 varieties Sotabdi was found to be better yielding ability and produced comparatively higher plant height, total tillers plant-1, effective tillers plant-1,root dry weight plant-1, grains panicle-1, 100 grains weight, grains weight plan-1, straw weight plant-1, biological yield plant-1, in respect of harvest index values. BAW56 was observed as medium performed variety and Kanchan was the least. Regarding interaction effect of the variety Sotabdi also showed the highest plant-1, total tillers plant-1, effective tillers plant-1, root dry weight plant-1, grains panicle-1,100 grains weight, grains weight plant-1, straw weight plant-1, biological yield plant-1 and harvest index by foliar spray. The results indicated that all the varieties gave higher grain yields under foliar spray application method.Progressive Agriculture 28 (4): 287-294, 2017


2020 ◽  
pp. 1-18
Author(s):  
Manzoor R. Khan ◽  
Zaki A. Siddiqui

Abstract Effect of Meloidogyne incognita, Pectobacterium betavasculorum and Rhizoctonia solani alone, pre, post and simultaneous inoculations to find out role of each pathogen on growth, chlorophyll and carotenoid, superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione reductase (GR) activities and proline, H2O2 and malondialdehyde (MDA) of beetroot (Beta vulgaris L). Inoculation of plants with M. incognita / P. betavasculorum or R. solani reduced plant growth (root dry weight) (42.0%), chlorophyll (24.2%) and carotenoid (47.7%) while inoculation of pathogens under study resulted in increased activities of antioxidant enzymes, proline, H2O2 and MDA. Combined inoculation of pathogens under study resulted in greater reduction of plant growth (74.9%), chlorophyll (55.3%) and carotenoid (83.7%) than individual pathogen. Greatest reduction in plant growth, chlorophyll and carotenoid and maximum activities of antioxidant enzymes, proline, H2O2 and MDA were observed when M. incognita was inoculated 20 days prior to P. betavasculorum plus R. solani. P. betavasculorum and R. solani reduced galling and nematode multiplication but maximum reduction in galling (82.8%) and nematode multiplication (82.7%) was observed when P. betavasculorum plus R. solani were inoculated prior to nematodes. Necrosis soft rot and root rot indices by P. betavasculorum and R. solani were 3 respectively. Disease indices were 5 when two or more pathogens were inoculated together. Prior inoculation of M. incognita predisposed beetroots to P. betavasculorum and R. solani and aggravates the disease.


Plant Disease ◽  
2011 ◽  
Vol 95 (9) ◽  
pp. 1194-1194 ◽  
Author(s):  
G. Polizzi ◽  
D. Aiello ◽  
V. Guarnaccia ◽  
A. Panebianco ◽  
P. T. Formica

The genus Passiflora (Passifloraceae family) contains more than 500 species and several hybrids. In Italy, some of these species and hybrids are grown as ornamental evergreen vines or shrubs. During August and September 2010, a crown and root rot was observed in a stock of approximately 6,000 potted 2-year-old plants of Passiflora mollissima (Kunth) Bailey, commonly known as the banana passionflower, in a nursery located in eastern Sicily (southern Italy). Disease incidence was approximately 20%. Disease symptoms consisted of water-soaked lesions at the crown and a root rot. Successively, older crown lesions turned light brown to brown and expanded to girdle the stem. As crown and root rot progressed, basal leaves turned yellow and gradually became necrotic and infected plants wilted and died. A fungus with mycelial and morphological characteristics of Rhizoctonia solani Kühn was consistently isolated from crown lesions and brown decaying roots when plated on potato dextrose agar (PDA) amended with streptomycin sulfate at 100 μg/ml. Fungal colonies were initially white, turned brown with age, and produced irregularly shaped, brown sclerotia. Mycelium was branched at right angles with a septum near the branch with a slight constriction at the branch base. Hyphal cells removed from 10 representative cultures grown at 25°C on 2% water agar were determined to be multinucleate when stained with 1% safranin O and 3% KOH solution (1) and examined at ×400. Anastomosis groups were determined by pairing isolates on 2% water agar in petri plates (4). Pairings were made with tester strains of AG-1, AG-2, AG-3, AG-4, AG-5, AG-6, and AG-11. Anastomosis was observed only with tester isolates of AG-4 (3). Pathogenicity tests were performed on container-grown, healthy, 3-month-old cuttings. Twenty plants of P. mollissima were inoculated near the base of the stem with five 1-cm2 PDA plugs from 5-day-old mycelial plugs obtained from two representative cultures. The same number of plants served as uninoculated controls. Plants were maintained at 25°C and 95% relative humidity with a 12-h fluorescent light/dark regimen. Wilt symptoms due to crown and root rot, identical to ones observed in the nursery, appeared 7 to 8 days after inoculation with either of the two isolates and all plants died within 20 days. No disease was observed on control plants. R. solani AG-4 was reisolated from symptomatic tissues and identified as previously described, confirming its pathogenicity. Damping-off or crown and root rot due to R. solani were previously detected on P. edulis in Brazil, Africa, India, Oceania, and Australia (2). To our knowledge, this is the first report of R. solani causing crown and root rot on P. mollissima. References: (1) R. J. Bandoni. Mycologia 71:873, 1979. (2) J. L. Bezerra and M. L. Oliveira. Fitopathol. Brasil. 9:273, 1984. (3) D. E. Carling. Page 37 in: Grouping in Rhizoctonia solani by Hyphal Anastomosis Reactions. Kluwer Academic Publishers, the Netherlands, 1996. (4) C. C. Tu and J. W. Kimbrough. Mycologia 65:941, 1973.


Sign in / Sign up

Export Citation Format

Share Document