scholarly journals Research on solar water heating system based on TRNSYS simulation optimization

2021 ◽  
Vol 69 (4) ◽  
pp. 132
Author(s):  
Yan Yan ◽  
Liyan Zhang ◽  
Yuhan Li ◽  
Xiangyu Xu ◽  
Zhencheng Jiang ◽  
...  

In this paper, the typical system of solar energy system: natural circulation system and forced circulation system are analyzed. The two systems are simulated on the TRNSYS platform, and the configuration of the system itself has been discussed. The purpose is to provide reference for the scientific implementation of solar energy architecture integration. On the basis of summarizing the solar energy construction technology, the natural circulation system and the forced circulation system of solar hot water system have been discussed emphatically. The simulation experiment is designed on the TRNSYS platform. The influence of different heat collection area and water tank volume on solar energy guarantee rate and system efficiency has been discussed by simulation data. Finally, the optimal allocation scheme of natural constraints of natural circulation and forced circulation has been obtained.

2013 ◽  
Vol 325-326 ◽  
pp. 379-383
Author(s):  
Jian Lv ◽  
Xiao Hong Ma ◽  
Shu Ai Zhen ◽  
Ying Zhang

Through testing the operation of solar energy-water source heat pump hot water system, analysis of the factors that affect system performance, research engineering optimization strategies for improving systems performance. Given some optimization recommendations for both solar energy system and water source heat pump system. Provide some supports for this new technology which use renewable energy in the future development.


Author(s):  
K K Ramasamy ◽  
P S S Srinivasan

This paper investigates a proposal to replace the electrically operated pump of a forced circulation solar hot water system with a windmill-driven pump. A two-stage centrifugal pump driven by a vertical axis windmill with a Savonius type rotor is added to the fluid loop. Tests on the forced circulation system (FCS) mode, with two different pump speeds, driven by an electrically operated pump or in wind-assisted system (WAS) mode were carried out during January, April, July, and October 2009. Test results obtained on clear days are reported. A daily average thermal efficiency level of between 30 and 37 per cent was obtained in FCS mode and it was between 31 and 36 per cent in WAS mode. With higher wind velocities, higher collector flow rates and higher efficiencies are obtained. In general, the performance of a domestic hot water system operating in WAS mode is on a par with that obtained in FCS mode. The WAS mode is a viable alternative to FCS mode in remote areas where the supply of electricity is problematic.


2012 ◽  
Vol 193-194 ◽  
pp. 30-33
Author(s):  
Xue Ying Wang ◽  
Dong Xu ◽  
Ya Jun Wu

This article analyzes the problem in application the solar system was used in residential building, puts forward the requirements to use energy and choose the setting of the solar energy collector from two aspects of building and drainage design respectively. In addition, the article explicates andthe solar energy collector and building integrated design and the development of solar energy collector. At last, the article puts forward some Suggestions on the improvement and development of residential solar hot water system and the design of the hot water supply bath solution of practice to make solar energy and low power assisted by night combining.


2013 ◽  
Vol 316-317 ◽  
pp. 176-180 ◽  
Author(s):  
Xue Jing Zheng ◽  
Meng Jun Yang ◽  
Wan Dong Zheng ◽  
Yun Kun Bu

Sino-Singapore Tianjin Eco-city is a strategic cooperation project between China and Singapore to improve the living environment and build an eco-culture. Animation-park covers an area of 1 km2, with a total construction area of 7.7x105m2. Wide sources of the renewable energy, such as solar hot water system, ground source heat pump system, solar PV power generation system, and deep geothermal energy system, is strongly recommended to use in eco-city in order to save energy and protect the environment. The usage of renewable energy is seen as a complement to the conventional energy. The energy consumption of the animation park is 42926tce of coal per year, and the renewable energy that used is 4573.6tce of coal per year. The usage of renewable energy leads to the reduction in the emission of CO2 of 18895.9t per year.


2014 ◽  
Vol 587-589 ◽  
pp. 243-246
Author(s):  
Chu Ping Lu ◽  
Kai Ji

This paper is as an example of the hot water supply of the hotel in the city,The design of the hot water system is the solar energy and the air source heat pump,includes:the selection calculation of the air source heat pump of the water heater , the selection and calculation of the solar collector,the determination of the thermal storage tank and the determination of the circulating water pump of heat collecting .


2019 ◽  
Vol 111 ◽  
pp. 06014
Author(s):  
Andrew Lyden ◽  
Paul Tuohy

Decentralised energy systems provide the potential for adding energy system flexibility by separating demand/supply dynamics with demand side management and storage technologies. They also offer an opportunity for implementing technologies which enable sector coupling benefits, for example, heat pumps with controls set to use excess wind power generation. Gaps in this field relating to planning-level modelling tools have previously been identified: thermal characteristic modelling for thermal storage and advanced options for control. This paper sets out a methodology for modelling decentralised energy systems including heat pumps and thermal storage with the aim of assisting planning-level design. The methodology steps consist of: 1) thermal and electrical demand and local resource assessment methods, 2) energy production models for wind turbines, PV panels, fuel generators, heat pumps, and fuel boilers, 3) bi-directional energy flow models for simple electrical storage, hot water tank thermal storage with thermal characteristics, and a grid-connection, 4) predictive control strategy minimising electricity cost using a 24-hour lookahead, and 5) modelling outputs. Contributions to the identified gaps are examined by analysing the sensible thermal storage model with thermal characteristics and the use of the predictive control. Future extensions and applications of the methodology are discussed.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 266 ◽  
Author(s):  
Edoardo Alessio Piana ◽  
Benedetta Grassi ◽  
Laurent Socal

Thermal solar systems are interesting solutions to reduce CO 2 emissions and gradually promote the use of renewable sources. However, sizing such systems and analysing their behavior are still challenging issues, especially for the trade-off between useful solar energy maximization and stagnation risk minimization. The new EPB (Energy Performance of Buildings) standard EN 15316-4-3:2017 offers several methods to evaluate the performance of a forced circulation solar system. One of them is a dynamic hourly method that must be used together with EN 15316-5:2017 for the simulation of the stratified storage tank connected with the solar loop. In this work, such dynamic hourly method is extended to provide more realistic predictions. In particular, modeling of the pump operation due to solar fluid temperature exceeding a set threshold, or due to low temperature differential between solar field and storage tank, is introduced as an on–off control. The implemented code is applied to a case study of solar system for the preparation of domestic hot water and the impact of different design parameters is evaluated. The model predicts a higher risk of overtemperature lock-out or stagnation when the solar field surface is increased, the storage volume is reduced and water consumption is set to zero to simulate summer vacation periods. Finally, a simple modulating control with a time step of a few seconds to a few minutes is introduced, quantitatively showing the resulting benefits in terms of useful solar energy increase, back-up operation savings and reduced auxiliary energy use.


Sign in / Sign up

Export Citation Format

Share Document