scholarly journals In Vitro effect of Bone Morphogenetic Protein-2 (BMP-2) and Cigarette Smoke Extract (CSE) on Osteoblastic Mesenchymal Stem Cells: Beneficial Biological Effects of BMP-2 Negated By CSE

2018 ◽  
Vol 4 (1) ◽  
pp. 110-120
Author(s):  
Andrew Sloan ◽  
Issam Hussain ◽  
Mohamed El-Sheemy ◽  
Mohammad Maqsood ◽  
Latif Mubasher ◽  
...  

Introduction: Clinical and demographic studies have shown that tobacco smoking is a major contributor to non- and delayed-union in fracture healing. The cellular and molecular basis for this is poorly understood, and few studies in human fractures have been undertaken.Aims: To analyse the in vitro biological effects of tobacco smoking at the cellular level within the human fracture microenvironment, with specific regard to mesenchymal stem cell (MSC) proliferation and to ascertain whether the application of bone morphogenetic factor-2 (BMP-2) could be used therapeutically to improve fracture healing.Methods: Fracture haematomas (n=10) were collected from anaesthetised, non-smoking patients who had sustained a tibial fracture, and who were undergoing surgical operative fixation. The semi-solid material was dissected and explanted into tissue culture flasks. Complete culture media was introduced, and cultures were incubated at 37oC in a humidified 5% CO2 environment. Cigarette smoke extract (CSE) was produced and infused into the cell cultures to establish an in vitro smoking environment. A control group (n=10) was set-up and left  ntreated by CSE. Harvested, spindle-shaped adherent cells were characterised by immunocytochemistry. Cell populations were counted via flow cytometry to assess and compare proliferation rates between CSE-treated and untreated cell cultures. BMP-2 concentrations (10 and 100 ng/mL (an additional dose of 500 ng/mL in CSE- reated cells)) were infused into cell cultures to enhance in vitro cellular viability, which was analysed by means of the MTT assay.Results: There was a significant reduction in the rate of proliferation of osteoblastic MSCs in CSE-treated cells after 5 days of culture (p < 0.05). At a dose of 100 ng/mL, BMP-2 augmented cellular growth and improved cellular viability in cultures not treated with CSE (p < 0.0001). No significant improvement was seen in CSE-treated cell cultures.Summary: The effect of smoking on bone fracture healing appears to contribute to the inhibition of osteoblast proliferation, which may not be reversible with the therapeutic use of exogenous BMP-2. Moreover, the improvement seen in non-smokers does strengthen the case for smokers to cease using tobacco in the perioperative setting in order that such treatments are rendered more effective.

2021 ◽  
Vol 96 ◽  
pp. 107593
Author(s):  
Yiming Ma ◽  
Lijuan Luo ◽  
Xiangming Liu ◽  
Herui Li ◽  
Zihang Zeng ◽  
...  

2019 ◽  
Vol 133 (13) ◽  
pp. 1523-1536 ◽  
Author(s):  
Xiao Sun ◽  
Xiuli Feng ◽  
Dandan Zheng ◽  
Ang Li ◽  
Chunyan Li ◽  
...  

Abstract Cigarette smoke (CS) is the major cause of chronic obstructive pulmonary disease (COPD). CS heightens inflammation, oxidative stress and apoptosis. Ergosterol is the main bioactive ingredient in Cordyceps sinensis (C. sinensis), a traditional medicinal herb for various diseases. The objective of this work was to investigate the effects of ergosterol on anti-inflammatory and antioxidative stress as well as anti-apoptosis in a cigarette smoke extract (CSE)-induced COPD model both in vitro and in vivo. Our results demonstrate that CSE induced inflammatory and oxidative stress and apoptosis with the involvement of the Bcl-2 family proteins via the nuclear factor kappa B (NF-κB)/p65 pathway in both 16HBE cells and Balb/c mice. CSE induced epithelial cell death and increased the expression of nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), malondialdehyde (MAD) and the apoptosis-related proteins cleaved caspase 3/7/9 and cleaved-poly-(ADP)-ribose polymerase (PARP) both in vitro and in vivo, whereas decreased the levels of superoxide dismutase (SOD) and catalase (CAT). Treatment of 16HBE cells and Balb/c mice with ergosterol inhibited CSE-induced inflammatory and oxidative stress and apoptosis by inhibiting the activation of NF-κB/p65. Ergosterol suppressed apoptosis by inhibiting the expression of the apoptosis-related proteins both in vitro and in vivo. Moreover, the usage of QNZ (an inhibitor of NF-κB) also partly demonstrated that NF-κB/p65 pathway was involved in the ergosterol protective progress. These results show that ergosterol suppressed COPD inflammatory and oxidative stress and apoptosis through the NF-κB/p65 pathway, suggesting that ergosterol may be partially responsible for the therapeutic effects of cultured C. sinensis on COPD patients.


1985 ◽  
Vol 157 (2-3) ◽  
pp. 169-180 ◽  
Author(s):  
Margareta Curvall ◽  
Tommy Jansson ◽  
Bertil Pettersson ◽  
Annica Hedin ◽  
Curt R. Enzell

1994 ◽  
Vol 266 (3) ◽  
pp. H874-H880 ◽  
Author(s):  
T. Murohara ◽  
K. Kugiyama ◽  
M. Ohgushi ◽  
S. Sugiyama ◽  
H. Yasue

To test whether cigarette smoke extract (CSE) influences the endothelial regulation of vascular tone in vitro, pig coronary arterial rings were incubated in organ chambers and isometric tension changes were examined. CSE was prepared by bubbling mainstream smoke of one filter cigarette into phosphate-buffered saline (2 ml). Fresh CSE (3.3, 10, and 30 microliters/ml) elicited initial contraction and subsequent relaxation during stable contraction to prostaglandin F2 alpha (PGF2 alpha). Initial contraction to CSE was dependent on the presence of endothelium, whereas subsequent relaxation was endothelium independent. Initial contraction was significantly attenuated by superoxide dismutase (SOD), methylene blue, but not by catalase. Prior inhibition of the basal release of endothelium-derived relaxing factor by NG-monomethyl-L-arginine also inhibited the initial contraction, and this inhibition was reversed by coincubation with L-arginine but not D-arginine. Subsequent relaxation was significantly potentiated by SOD but was markedly attenuated by methylene blue. CSE reduced ferricytochrome c, and this reduction was significantly inhibited by SOD. In conclusion, CSE induced biphasic tension change, initial contraction, and subsequent relaxation during stable contraction to PGF2 alpha in isolated pig coronary arteries. The initial contraction may be, at least in part, mediated through the degradation of basally released endothelium-derived relaxing factor (nitric oxide) by superoxide anions derived from CSE.


1986 ◽  
Vol 169 (3) ◽  
pp. 129-139 ◽  
Author(s):  
Tommy Jansson ◽  
Margareta Curvall ◽  
Annica Hedin ◽  
Curt R. Enzell

2007 ◽  
Vol 196 (2) ◽  
pp. 251-261 ◽  
Author(s):  
Julia M Young ◽  
Jennifer L Juengel ◽  
Kenneth G Dodds ◽  
Mhairi Laird ◽  
Peter K Dearden ◽  
...  

Bone morphogenetic proteins (BMPs) have been shown to influence the regulation of FSH synthesis and secretion at the level of the pituitary. Primary pituitary cells were harvested and cultured from Booroola ewes homozygous for a mutation in activin receptor-like kinase 6 (ALK6) also known as BMP receptor IB (BMPRIB), and from wild-type (WT) ewes to determine if the mutation caused alterations in FSH secretion in vitro. The cells were collected 24 h following induction of luteolysis and cultured for 72 h prior to being challenged for 24 h with BMP2, BMP4, BMP6, growth and differentiation factor-9 (GDF9), transforming growth factor-β 1, activin-A and GnRH. The levels of FSH and LH were measured by RIA and then compared with the untreated controls. Primary pituitary cell cultures from Booroola ewes secreted less FSH than WT cells in the presence of BMP2, BMP4 and BMP6. These BMPs did not affect the FSH stores within the cells, or the levels of LH released. GDF9 appeared to act in a BMP-like manner by suppressing FSH secretion. The ALK6 receptor however, was not found to co-localise with gonadotroph cells in either Booroola or WT pituitary tissues. These findings imply that the increased sensitivity of Booroola cells to BMP2, BMP4, BMP6 and GDF9 cannot be due to the direct action of the ALK6 mutant Booroola receptor in the cells that synthesise FSH.


Author(s):  
Gaurav Girdhar ◽  
Sulan Xu ◽  
Jolyon Jesty ◽  
Danny Bluestein

Cigarette smoking is a risk factor for development of cardiovascular (CV) disease [1], with increased platelet activation due to cigarette smoke involving a major part of this risk.[2] We have shown that this smoke-induced platelet activation is largely due to the non-nicotine smoke components and their effects can be effectively modulated in the presence of nicotine.[3] However, the effects of nicotine and non-nicotine cigarette smoke components need to be confirmed more physiologically in the presence of endothelial cells (ECs). Prior in-vitro studies have shown that high concentrations of cigarette smoke extract (CSE) increase adhesion molecule expression on ECs.[4] These studies however preclude the involvement of physiological shear stresses and are performed on ECs alone. To overcome these limitations and investigate ECs-platelets together in one system under shear stress, we use a hemodynamic shear device (HSD) that combines features of the cone and plate, and the annular Couette viscometer (to facilitate platelet sampling). We test the following hypotheses — (1) smoke-activated platelets and the nicotine-free extract would confer a synergistic E-selectin expression on ECs, and (2) in contrast to conventional cigarette extracts, nicotine-free smoke extracts would increase platelet activation more significantly, and that this effect may be independent of the presence of ECs.


Sign in / Sign up

Export Citation Format

Share Document