scholarly journals One-stage synthesis of 1,1-diethoxyethane from ethanol using copper-containing catalysts

2021 ◽  
Vol 19 (3) ◽  
pp. 195-198
Author(s):  
M.M. Mambetova ◽  
K. Dossumov ◽  
G.E. Ergaziyeva ◽  
M.M. Anissova ◽  
B.B. Baizhomartov

The conversion of ethanol on low-percentage copper-containing catalysts at temperatures of 300 oC and 350 oC was studied. γ-Al2O3, SiO2 and HZSM-5 were studied as the carrier of the active phase. It is shown that the main direction of ethanol conversion on low-percentage copper-containing catalysts is its dehydrogenation and subsequent conversion of the resulting products into 1,1-diethoxyethane. Among the studied catalysts (1 wt.% CuO/Al2O3, 1 wt.% CuO/SiO2 and 1 wt.% CuO/ HZSM-5 the most active in the production of 1,1-diethoxyethane was 1 wt.% CuO/Al2O3, modification of it with cerium oxide led to an increase in its activity in the formation of 1,1-diethoxyethane, at the reaction temperature of 350 oС, the yield of the target product was 27 vol.%. The results showed that the modification of CuO/Al2O3 leads to an increase in the catalytic activity of the sample.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoottapong Klinthongchai ◽  
Seeroong Prichanont ◽  
Piyasan Praserthdam ◽  
Bunjerd Jongsomjit

AbstractMesocellular foam carbon (MCF-C) is one the captivating materials for using in gas phase dehydrogenation of ethanol. Extraordinary, enlarge pore size, high surface area, high acidity, and spherical shape with interconnected pore for high diffusion. In contrary, the occurrence of the coke is a majority causes for inhibiting the active sites on catalyst surface. Thus, this study aims to investigate the occurrence of the coke to optimize the higher catalytic activity, and also to avoid the coke formation. The MCF-C was synthesized and investigated using various techniques. MCF-C was spent in gas-phase dehydrogenation of ethanol under mild conditions. The deactivation of catalyst was investigated toward different conditions. Effects of reaction condition including different reaction temperatures of 300, 350, and 400 °C on the deactivation behaviors were determined. The results indicated that the operating temperature at 400 °C significantly retained the lowest change of ethanol conversion, which favored in the higher temperature. After running reaction, the physical properties as pore size, surface area, and pore volume of spent catalysts were decreased owing to the coke formation, which possibly blocked the pore that directly affected to the difficult diffusion of reactant and caused to be lower in catalytic activity. Furthermore, a slight decrease in either acidity or basicity was observed owing to consumption of reactant at surface of catalyst or chemical change on surface caused by coke formation. Therefore, it can remarkably choose the suitable operating temperature to avoid deactivation of catalyst, and then optimize the ethanol conversion or yield of acetaldehyde.


2021 ◽  
Author(s):  
Kadriye Özlem Hamaloğlu ◽  
Rukiye Babacan Tosun ◽  
Serap Ulu ◽  
Hakan Kayi ◽  
Cengiz Kavaklı ◽  
...  

A synergistic catalyst in the form of monodisperse-porous CeO2 microspheres supported Pd nanoparticles (Pd NPs) was synthesized. CeO2 microspheres 4 μm in size were obtained by a newly developed “sol-gel...


2021 ◽  
Author(s):  
Petar Djinović ◽  
Janez Zavašnik ◽  
Janvit Teržan ◽  
Ivan Jerman

AbstractCeO2, V2O5 and CeVO4 were synthesised as bulk oxides, or deposited over activated carbon, characterized by XRD, HRTEM, CO2-TPO, C3H8-TPR, DRIFTS and Raman techniques and tested in propane oxidative dehydrogenation using CO2. Complete oxidation of propane to CO and CO2 is favoured by lattice oxygen of CeO2. The temperature programmed experiments show the ~ 4 nm AC supported CeO2 crystallites become more susceptible to reduction by propane, but less prone to re-oxidation with CO2 compared to bulk CeO2. Catalytic activity of CeVO4/AC catalysts requires a 1–2 nm amorphous CeVO4 layer. During reaction, the amorphous CeVO4 layer crystallises and several atomic layers of carbon cover the CeVO4 surface, resulting in deactivation. During reaction, V2O5 is irreversibly reduced to V2O3. The lattice oxygen in bulk V2O5 favours catalytic activity and propene selectivity. Bulk V2O3 promotes only propane cracking with no propene selectivity. In VOx/AC materials, vanadium carbide is the catalytically active phase. Propane dehydrogenation over VC proceeds via chemisorbed oxygen species originating from the dissociated CO2. Graphic Abstract


2019 ◽  
Vol 45 (4) ◽  
pp. 4509-4513 ◽  
Author(s):  
M.N. Smirnova ◽  
G.E. Nikiforova ◽  
L.V. Goeva ◽  
N.P. Simonenko

Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 585 ◽  
Author(s):  
Derun Hua ◽  
Zheng Zhou ◽  
Qianqian Hua ◽  
Jian Li ◽  
Xinning Lu ◽  
...  

The metathesis of 2-butene (Trans and Cis) to propene was investigated over W-based catalysts. Thermodynamic calculations for metathesis and isomerization were carried out at various temperatures to test the reactions. The results showed that the WO3/MCM-48 catalyst had good catalytic activity. The metathesis activity depended on the acidity of the catalyst and the dispersity of the WO3 on the supports. High temperatures promoted the isomerization of 2-butene to 1-butene. According to thermodynamic analysis, however, this is adverse to the metathesis reaction, making it important to determine an appropriate reaction temperature.


2017 ◽  
Vol 7 (20) ◽  
pp. 4629-4639 ◽  
Author(s):  
M. Tonelli ◽  
M. Aouine ◽  
L. Massin ◽  
V. Belliere Baca ◽  
J. M. M. Millet

Multicomponent FeMoTeO catalysts have been synthesized and studied for mild propene oxidation to acrolein.


Sign in / Sign up

Export Citation Format

Share Document