scholarly journals Yeast cell factories for sustainable whey-to-ethanol valorisation towards a circular economy

2021 ◽  
Vol 8 (4) ◽  
pp. 1529-1549
Author(s):  
Patrícia Carvalho ◽  
Carlos E. Costa ◽  
Sara L. Baptista ◽  
Lucília Domingues

Cheese whey is the major by-product of the dairy industry, and its disposal constitutes an environmental concern. The production of cheese whey has been increasing, with 190 million tonnes per year being produced nowadays. Therefore, it is emergent to consider different routes for cheese whey utilization. The great nutritional value of cheese whey turns it into an attractive substrate for biotechnological applications. Currently, cheese whey processing includes a protein fractionating step that originates the permeate, a lactose-reach stream further used for valorisation. In the last decades, yeast fermentation has brought several advances to the search for biorefinery alternatives. From the plethora of value-added products that can be obtained from cheese whey, ethanol is the most extensively explored since it is the alternative biofuel most used worldwide. Thus, this review focuses on the different strategies for ethanol production from cheese whey using yeasts as promising biological systems, including its integration in lignocellulosic biorefineries. These valorisation routes encompass the improvement of the fermentation process as well as metabolic engineering techniques for the introduction of heterologous pathways, resorting mainly to Kluyveromyces sp. and Saccharomyces cerevisiae strains. The solutions and challenges of the several strategies will be unveiled and explored in this review.

Foods ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 347 ◽  
Author(s):  
Iliada Lappa ◽  
Aikaterini Papadaki ◽  
Vasiliki Kachrimanidou ◽  
Antonia Terpou ◽  
Dionysios Koulougliotis ◽  
...  

Cheese whey constitutes one of the most polluting by-products of the food industry, due to its high organic load. Thus, in order to mitigate the environmental concerns, a large number of valorization approaches have been reported; mainly targeting the recovery of whey proteins and whey lactose from cheese whey for further exploitation as renewable resources. Most studies are predominantly focused on the separate implementation, either of whey protein or lactose, to configure processes that will formulate value-added products. Likewise, approaches for cheese whey valorization, so far, do not exploit the full potential of cheese whey, particularly with respect to food applications. Nonetheless, within the concept of integrated biorefinery design and the transition to circular economy, it is imperative to develop consolidated bioprocesses that will foster a holistic exploitation of cheese whey. Therefore, the aim of this article is to elaborate on the recent advances regarding the conversion of whey to high value-added products, focusing on food applications. Moreover, novel integrated biorefining concepts are proposed, to inaugurate the complete exploitation of cheese whey to formulate novel products with diversified end applications. Within the context of circular economy, it is envisaged that high value-added products will be reintroduced in the food supply chain, thereby enhancing sustainability and creating “zero waste” processes.


Proceedings ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 1
Author(s):  
Elena Mossali ◽  
Marco Diani ◽  
Marcello Colledani

Circular Economy is the solution for the current environmental crisis, representing a huge economic opportunity to build new sustainable businesses. However, many barriers need to be faced for its implementation at industrial scale—firstly, the lack of data sharing between the different stakeholders of product value-chains. The DigiPrime project is an EU-funded Innovation Action aimed at developing and demonstrating a digital platform with services able to unlock innovative cross-sectorial business models for the remanufacturing and recycling of target value-added products. In this paper, the concept behind the DigiPrime project is reported, with a particular focus on the construction sector.


2006 ◽  
Vol 118 ◽  
pp. 121-130
Author(s):  
Kazumasa Sakoshi ◽  
Chuji Kagaya ◽  
Eiji Kagaya

In recent years, global warming and resource exhaustion problems require the manufacturers to minimize substances of environmental concern and industrial wastes and adopt measures for expedited recycling. As a result, making effective use of wastes to try for further energy conservation and high quality products is an important assignment in the heat treatment and surface hardening treatment fields as well. This study has investigated the effectiveness of waste melamine resin in solid nitriding of JIS SUS304 austenitic stainless steel plate. After heating the stainless plate in waste melamine resin fragments and cooling in air, the surface was analyzed. It was found that a nitrided layer had formed on the surface of the plate, and the nitriding potential of waste melamine was shown to be high. It is therefore likely that this method can be effectively applied to the development of economically advantageous high-performance materials and value-added products.


Author(s):  
Lakshika Dissanayake ◽  
Lahiru N. Jayakody

Polyethylene terephthalate (PET) is globally the largest produced aromatic polyester with an annual production exceeding 50 million metric tons. PET can be mechanically and chemically recycled; however, the extra costs in chemical recycling are not justified when converting PET back to the original polymer, which leads to less than 30% of PET produced annually to be recycled. Hence, waste PET massively contributes to plastic pollution and damaging the terrestrial and aquatic ecosystems. The global energy and environmental concerns with PET highlight a clear need for technologies in PET “upcycling,” the creation of higher-value products from reclaimed PET. Several microbes that degrade PET and corresponding PET hydrolase enzymes have been successfully identified. The characterization and engineering of these enzymes to selectively depolymerize PET into original monomers such as terephthalic acid and ethylene glycol have been successful. Synthetic microbiology and metabolic engineering approaches enable the development of efficient microbial cell factories to convert PET-derived monomers into value-added products. In this mini-review, we present the recent progress of engineering microbes to produce higher-value chemical building blocks from waste PET using a wholly biological and a hybrid chemocatalytic–biological strategy. We also highlight the potent metabolic pathways to bio-upcycle PET into high-value biotransformed molecules. The new synthetic microbes will help establish the circular materials economy, alleviate the adverse energy and environmental impacts of PET, and provide market incentives for PET reclamation.


2021 ◽  

Abstract Selenium contamination of air, aquatic environments, soils and sediments is a serious environmental concern of increasing importance. Selenium has a paradoxical feature in bringing about health benefits under the prescribed level, but only a few fold increase in its concentration causes deleterious effects to flora and fauna, humans and the environment. This book Environmental Technologies to Treat Selenium Pollution: Principles and Engineering: presents the fundamentals of the biogeochemical selenium cycle and which imbalances in this cycle result in pollution.overviews chemical and biological technologies for successful treatment of selenium contaminated water, air, soils and sediments.explores the recovery of value-added products from selenium laden waste streams, including biofortication and selenium-based nanoparticles and quantum dots. This book may serve both as an advanced textbook for undergraduate and graduate students majoring in environmental sciences, technology or engineering as well as as a handbook for tertiary educators, researchers, professionals and policy makers who conduct research and practices in selenium related fields. It is essential reading for consulting companies when dealing with selenium related environmental (bio)technologies. ISBN: 9781789061048 (Paperback) ISBN: 9781789061055 (eBook)


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3462
Author(s):  
Maya Jacob John ◽  
Nokuzola Dyanti ◽  
Teboho Mokhena ◽  
Victor Agbakoba ◽  
Bruce Sithole

This paper deals with the development of cellulose nanofibres (CNFs) reinforced biopolymers for use in packaging applications. Cellulose nanofibres were extracted from sawdust by a combination of chemical and mechanical treatments. The extracted cellulose nanofibres were chemically modified (fCNFs) and characterised by Fourier Transform Infrared Spectroscopy (FTIR). Bionanocomposites were prepared from biopolymers polylactic acid/polybutylene succinate (PLA/PBS) and cellulose nanofibres by compounding in a twin-screw extruder followed by injection moulding. The developed bionanocomposites were subjected to mechanical and thermal characterisation. As part of product development, CNF-biopolymer pellets were also extruded into filaments which were then 3D printed into prototypes. This work is a successful demonstration of conversion of waste residues into value-added products, which is aligned to the principles of circular economy and sustainable development.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1139D-1140
Author(s):  
Dru N. Montri ◽  
Kathleen M. Kelley ◽  
Elsa S. Sánchez

A sensory evaluation was conducted on 9–10 Feb. 2005 at The Pennsylvania State University, University Park campus, to determine consumer acceptance of two edamame [Glycinemax (L.) Merrill] -based patties. This value-added product was chosen because of the increasing popularity of vegetable-based burgers. Patties were mainly composed of edamame, mushrooms, and onion; however, they differed, based on the type of mushroom and seasonings used and the addition of walnuts to one of the recipes. One type of patty was evaluated each day with participants rating it on overall appeal, flavor, appearance, and texture. A total of 209 consumers participated in the 2-day sensory evaluation, 106 on the first day and 103 on the second; and 23.6% and 25.2%, respectively, were familiar with or had heard of edamame before. Overall mean liking for the patties was 6.38 and 6.58 (1 being dislike extremely and 9 being like extremely) and mean liking for flavor was 6.44 and 6.83, respectively. Based on the sample, 43.4% and 35.9% of participants each day indicated that they “probably would buy” or “definitely would buy” this item from a supermarket. Consumers also ranked select product characteristics that influence their decision to purchase new food items in terms of importance. Results were similar for both days with flavor, nutritional value, and price ranked as the three most important factors that influence their purchasing deci-sions. Verbal comments from participants indicated a strong interest in purchasing this product. Results suggested that consumers found the two edamame-based patties acceptable. Small-acreage growers could consider marketing edamame for use in value-added products such as these.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Haojie Pan ◽  
Jia Wang ◽  
Haoliang Wu ◽  
Zhongjian Li ◽  
Jiazhang Lian

Abstract Background CO2 valorization is one of the effective methods to solve current environmental and energy problems, in which microbial electrosynthesis (MES) system has proved feasible and efficient. Cupriviadus necator (Ralstonia eutropha) H16, a model chemolithoautotroph, is a microbe of choice for CO2 conversion, especially with the ability to be employed in MES due to the presence of genes encoding [NiFe]-hydrogenases and all the Calvin–Benson–Basham cycle enzymes. The CO2 valorization strategy will make sense because the required hydrogen can be produced from renewable electricity independently of fossil fuels. Main body In this review, synthetic biology toolkit for C. necator H16, including genetic engineering vectors, heterologous gene expression elements, platform strain and genome engineering, and transformation strategies, is firstly summarized. Then, the review discusses how to apply these tools to make C. necator H16 an efficient cell factory for converting CO2 to value-added products, with the examples of alcohols, fatty acids, and terpenoids. The review is concluded with the limitation of current genetic tools and perspectives on the development of more efficient and convenient methods as well as the extensive applications of C. necator H16. Conclusions Great progress has been made on genetic engineering toolkit and synthetic biology applications of C. necator H16. Nevertheless, more efforts are expected in the near future to engineer C. necator H16 as efficient cell factories for the conversion of CO2 to value-added products.


Sign in / Sign up

Export Citation Format

Share Document