scholarly journals PRELIMINARY SEPARATION OF CHARGED PARTICLES IN AN ION SOURCE AT ATMOSPHERIC PRESSURE

2019 ◽  
Vol 29 (4) ◽  
pp. 73-79
Author(s):  
I. V. Kurnin ◽  
◽  
N. V. Krasnov ◽  
2015 ◽  
Vol 10 (0) ◽  
pp. 3405016-3405016 ◽  
Author(s):  
Shaofei GENG ◽  
Katsuyoshi TSUMORI ◽  
Haruhisa NAKANO ◽  
Masashi KISAKI ◽  
Yasuhiko TAKEIRI ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6760
Author(s):  
De-Yi Huang ◽  
Meng-Jiy Wang ◽  
Jih-Jen Wu ◽  
Yu-Chie Chen

Atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) and electrospray ionization (ESI)-MS can cover the analysis of analytes from low to high polarities. Thus, an ion source that possesses these two ionization functions is useful. Atmospheric surface-assisted ionization (ASAI), which can be used to ionize polar and nonpolar analytes in vapor, liquid, and solid forms, was demonstrated in this study. The ionization of analytes through APCI or ESI was induced from the surface of a metal substrate such as a titanium slab. ASAI is a contactless approach operated at atmospheric pressure. No electric contacts nor any voltages were required to be applied on the metal substrate during ionization. When placing samples with high vapor pressure in condensed phase underneath a titanium slab close to the inlet of the mass spectrometer, analytes can be readily ionized and detected by the mass spectrometer. Furthermore, a sample droplet (~2 μL) containing high-polarity analytes, including polar organics and biomolecules, was ionized using the titanium slab. One titanium slab is sufficient to induce the ionization of analytes occurring in front of a mass spectrometer applied with a high voltage. Moreover, this ionization method can be used to detect high volatile or polar analytes through APCI-like or ESI-like processes, respectively.


2012 ◽  
Vol 83 (2) ◽  
pp. 02B116 ◽  
Author(s):  
K. Tsumori ◽  
H. Nakano ◽  
M. Kisaki ◽  
K. Ikeda ◽  
K. Nagaoka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document