scholarly journals Saccharomyces cerevisiae--a model organism for the studies on vacuolar transport.

2001 ◽  
Vol 48 (4) ◽  
pp. 1025-1042 ◽  
Author(s):  
R Kucharczyk ◽  
J Rytka

The role of the yeast vacuole, a functional analogue of the mammalian lysosome, in the turnover of proteins and organelles has been well documented. This review provides an overview of the current knowledge of vesicle mediated vacuolar transport in the yeast Saccharomyces cerevisiae cells. Due to the conservation of the molecular transport machinery S. cerevisiae has become an important model system of vacuolar trafficking because of the facile application of genetics, molecular biology and biochemistry.

Toxicology ◽  
2004 ◽  
Vol 201 (1-3) ◽  
pp. 185-196 ◽  
Author(s):  
Chester E Rodriguez ◽  
Masaru Shinyashiki ◽  
John Froines ◽  
Rong Chun Yu ◽  
Jon M Fukuto ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3359
Author(s):  
Dimitris Liakopoulos

In the yeast Saccharomyces cerevisiae DNA replication and spindle assembly can overlap. Therefore, signaling mechanisms modulate spindle dynamics in order to ensure correct timing of chromosome segregation relative to genome duplication, especially when replication is incomplete or the DNA becomes damaged. This review focuses on the molecular mechanisms that coordinate DNA replication and spindle dynamics, as well as on the role of spindle-dependent forces in DNA repair. Understanding the coupling between genome duplication and spindle function in yeast cells can provide important insights into similar processes operating in other eukaryotic organisms, including humans.


2021 ◽  
Vol 9 (9) ◽  
pp. 1885
Author(s):  
Rachael E. Turner ◽  
Traude H. Beilharz

Alternative polyadenylation (APA) represents an important mechanism for regulating isoform-specific translation efficiency, stability, and localisation. Though some progress has been made in understanding its consequences in metazoans, the role of APA in the model organism Saccharomyces cerevisiae remains a relative mystery because, despite abundant studies on the translational state of mRNA, none differentiate mRNA isoforms’ alternative 3′-end. This review discusses the implications of alternative polyadenylation in S. cerevisiae using other organisms to draw inferences. Given the foundational role that research in this yeast has played in the discovery of the mechanisms of cleavage and polyadenylation and in the drivers of APA, it is surprising that such an inference is required. However, because advances in ribosome profiling are insensitive to APA, how it impacts translation is still unclear. To bridge the gap between widespread observed APA and the discovery of any functional consequence, we also provide a review of the experimental techniques used to uncover the functional importance of 3′ UTR isoforms on translation.


2019 ◽  
Vol 20 (9) ◽  
pp. 2133 ◽  
Author(s):  
Antonella Locascio ◽  
Nuria Andrés-Colás ◽  
José Miguel Mulet ◽  
Lynne Yenush

Sodium and potassium are two alkali cations abundant in the biosphere. Potassium is essential for plants and its concentration must be maintained at approximately 150 mM in the plant cell cytoplasm including under circumstances where its concentration is much lower in soil. On the other hand, sodium must be extruded from the plant or accumulated either in the vacuole or in specific plant structures. Maintaining a high intracellular K+/Na+ ratio under adverse environmental conditions or in the presence of salt is essential to maintain cellular homeostasis and to avoid toxicity. The baker’s yeast, Saccharomyces cerevisiae, has been used to identify and characterize participants in potassium and sodium homeostasis in plants for many years. Its utility resides in the fact that the electric gradient across the membrane and the vacuoles is similar to plants. Most plant proteins can be expressed in yeast and are functional in this unicellular model system, which allows for productive structure-function studies for ion transporting proteins. Moreover, yeast can also be used as a high-throughput platform for the identification of genes that confer stress tolerance and for the study of protein–protein interactions. In this review, we summarize advances regarding potassium and sodium transport that have been discovered using the yeast model system, the state-of-the-art of the available techniques and the future directions and opportunities in this field.


Sign in / Sign up

Export Citation Format

Share Document