scholarly journals Coupling DNA Replication and Spindle Function in Saccharomyces cerevisiae

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3359
Author(s):  
Dimitris Liakopoulos

In the yeast Saccharomyces cerevisiae DNA replication and spindle assembly can overlap. Therefore, signaling mechanisms modulate spindle dynamics in order to ensure correct timing of chromosome segregation relative to genome duplication, especially when replication is incomplete or the DNA becomes damaged. This review focuses on the molecular mechanisms that coordinate DNA replication and spindle dynamics, as well as on the role of spindle-dependent forces in DNA repair. Understanding the coupling between genome duplication and spindle function in yeast cells can provide important insights into similar processes operating in other eukaryotic organisms, including humans.

2019 ◽  
Vol 17 (3) ◽  
pp. 59-73
Author(s):  
Elena V. Sambuk ◽  
Dmitry M. Muzaev ◽  
Andrey M. Rumyantsev ◽  
Marina V. Padkina

Yeast Saccharomyces cerevisiae is a unique model for studying the molecular mechanisms of exotoxin-mediated antagonistic relationships between coexisting microorganisms. The synthesis of yeast toxins can be considered as an example of allelopathy and environmental competition. The elucidation of the role of allelopathy in the formation of microbial communities is of great interest for modern ecology. Yeast toxins are widely used in medicine, the food industry and biotechnology. The review examines the nature of exotoxins, the mechanisms of inheritance and interaction of the virus and yeast cells, as well as the prospects for their practical application.


2005 ◽  
Vol 33 (6) ◽  
pp. 1447-1450 ◽  
Author(s):  
M.A. Macris ◽  
P. Sung

Homologous recombination (HR) is a major pathway for the elimination of DNA DSBs (double-strand breaks) induced by high-energy radiation and chemicals, or that arise due to endogenous damage and stalled DNA replication forks. If not processed properly, DSBs can lead to cell death, chromosome aberrations and tumorigenesis. Even though HR is important for genome maintenance, it can also interfere with other DNA repair mechanisms and cause gross chromosome rearrangements. In addition, HR can generate DNA or nucleoprotein intermediates that elicit prolonged cell-cycle arrest and sometimes cell death. Genetic analyses in the yeast Saccharomyces cerevisiae have revealed a central role of the Srs2 helicase in preventing untimely HR events and in inhibiting the formation of potentially deleterious DNA structures or nucleoprotein complexes upon DNA replication stress. Paradoxically, efficient repair of DNA DSBs by HR is dependent on Srs2. In this paper, we review recent molecular studies aimed at deciphering the multifaceted role of Srs2 in HR and other cellular processes. These studies have provided critical insights into how HR is regulated in order to preserve genomic integrity and promote cell survival.


Genetics ◽  
2001 ◽  
Vol 159 (4) ◽  
pp. 1547-1558
Author(s):  
Noga Guttmann-Raviv ◽  
Elisabeth Boger-Nadjar ◽  
Iris Edri ◽  
Yona Kassir

Abstract In the budding yeast Saccharomyces cerevisiae initiation and progression through the mitotic cell cycle are determined by the sequential activity of the cyclin-dependent kinase Cdc28. The role of this kinase in entry and progression through the meiotic cycle is unclear, since all cdc28 temperature-sensitive alleles are leaky for meiosis. We used a “heat-inducible Degron system” to construct a diploid strain homozygous for a temperature-degradable cdc28-deg allele. We show that this allele is nonleaky, giving no asci at the nonpermissive temperature. We also show, using this allele, that Cdc28 is not required for premeiotic DNA replication and commitment to meiotic recombination. IME2 encodes a meiosis-specific hCDK2 homolog that is required for the correct timing of premeiotic DNA replication, nuclear divisions, and asci formation. Moreover, in ime2Δ diploids additional rounds of DNA replication and nuclear divisions are observed. We show that the delayed premeiotic DNA replication observed in ime2Δ diploids depends on a functional Cdc28. Ime2Δ cdc28-4 diploids arrest prior to initiation of premeiotic DNA replication and meiotic recombination. Ectopic overexpression of Clb1 at early meiotic times advances premeiotic DNA replication, meiotic recombination, and nuclear division, but the coupling between these events is lost. The role of Ime2 and Cdc28 in initiating the meiotic pathway is discussed.


2003 ◽  
Vol 161 (3) ◽  
pp. 483-488 ◽  
Author(s):  
Eric Hwang ◽  
Justine Kusch ◽  
Yves Barral ◽  
Tim C. Huffaker

Microtubules and actin filaments interact and cooperate in many processes in eukaryotic cells, but the functional implications of such interactions are not well understood. In the yeast Saccharomyces cerevisiae, both cytoplasmic microtubules and actin filaments are needed for spindle orientation. In addition, this process requires the type V myosin protein Myo2, the microtubule end–binding protein Bim1, and Kar9. Here, we show that fusing Bim1 to the tail of the Myo2 is sufficient to orient spindles in the absence of Kar9, suggesting that the role of Kar9 is to link Myo2 to Bim1. In addition, we show that Myo2 localizes to the plus ends of cytoplasmic microtubules, and that the rate of movement of these cytoplasmic microtubules to the bud neck depends on the intrinsic velocity of Myo2 along actin filaments. These results support a model for spindle orientation in which a Myo2–Kar9–Bim1 complex transports microtubule ends along polarized actin cables. We also present data suggesting that a similar process plays a role in orienting cytoplasmic microtubules in mating yeast cells.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 300
Author(s):  
Camilla Ceccatelli Berti ◽  
Giulia di Punzio ◽  
Cristina Dallabona ◽  
Enrico Baruffini ◽  
Paola Goffrini ◽  
...  

The increasing application of next generation sequencing approaches to the analysis of human exome and whole genome data has enabled the identification of novel variants and new genes involved in mitochondrial diseases. The ability of surviving in the absence of oxidative phosphorylation (OXPHOS) and mitochondrial genome makes the yeast Saccharomyces cerevisiae an excellent model system for investigating the role of these new variants in mitochondrial-related conditions and dissecting the molecular mechanisms associated with these diseases. The aim of this review was to highlight the main advantages offered by this model for the study of mitochondrial diseases, from the validation and characterisation of novel mutations to the dissection of the role played by genes in mitochondrial functionality and the discovery of potential therapeutic molecules. The review also provides a summary of the main contributions to the understanding of mitochondrial diseases emerged from the study of this simple eukaryotic organism.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 850
Author(s):  
Karolina Nowosad ◽  
Monika Sujka ◽  
Urszula Pankiewicz ◽  
Damijan Miklavčič ◽  
Marta Arczewska

The aim of the study was to investigate the influence of a pulsed electric field (PEF) on the level of iron ion accumulation in Saccharomyces cerevisiae cells and to select PEF conditions optimal for the highest uptake of this element. Iron ions were accumulated most efficiently when their source was iron (III) nitrate. When the following conditions of PEF treatment were used: voltage 1500 V, pulse width 10 μs, treatment time 20 min, and a number of pulses 1200, accumulation of iron ions in the cells from a 20 h-culture reached a maximum value of 48.01 mg/g dry mass. Application of the optimal PEF conditions thus increased iron accumulation in cells by 157% as compared to the sample enriched with iron without PEF. The second derivative of the FTIR spectra of iron-loaded and -unloaded yeast cells allowed us to determine the functional groups which may be involved in metal ion binding. The exposure of cells to PEF treatment only slightly influenced the biomass and cell viability. However, iron-enriched yeast (both with or without PEF) showed lower fermentative activity than a control sample. Thus obtained yeast biomass containing a high amount of incorporated iron may serve as an alternative to pharmacological supplementation in the state of iron deficiency.


1995 ◽  
Vol 130 (3) ◽  
pp. 687-700 ◽  
Author(s):  
E Yeh ◽  
R V Skibbens ◽  
J W Cheng ◽  
E D Salmon ◽  
K Bloom

We have used time-lapse digital- and video-enhanced differential interference contrast (DE-DIC, VE-DIC) microscopy to study the role of dynein in spindle and nuclear dynamics in the yeast Saccharomyces cerevisiae. The real-time analysis reveals six stages in the spindle cycle. Anaphase B onset appears marked by a rapid phase of spindle elongation, simultaneous with nuclear migration into the daughter cell. The onset and kinetics of rapid spindle elongation are identical in wild type and dynein mutants. In the absence of dynein the nucleus does not migrate as close to the neck as in wild-type cells and initial spindle elongation is confined primarily to the mother cell. Rapid oscillations of the elongating spindle between the mother and bud are observed in wild-type cells, followed by a slower growth phase until the spindle reaches its maximal length. This stage is protracted in the dynein mutants and devoid of oscillatory motion. Thus dynein is required for rapid penetration of the nucleus into the bud and anaphase B spindle dynamics. Genetic analysis reveals that in the absence of a functional central spindle (ndcl), dynein is essential for chromosome movement into the bud. Immunofluorescent localization of dynein-beta-galactosidase fusion proteins reveals that dynein is associated with spindle pole bodies and the cell cortex: with spindle pole body localization dependent on intact microtubules. A kinetic analysis of nuclear movement also revealed that cytokinesis is delayed until nuclear translocation is completed, indicative of a surveillance pathway monitoring nuclear transit into the bud.


Genetics ◽  
1987 ◽  
Vol 116 (4) ◽  
pp. 531-540
Author(s):  
Aileen K W Taguchi ◽  
Elton T Young

ABSTRACT The alcohol dehydrogenase II (ADH2) gene of the yeast, Saccharomyces cerevisiae, is not transcribed during growth on fermentable carbon sources such as glucose. Growth of yeast cells in a medium containing only nonfermentable carbon sources leads to a marked increase or derepression of ADH2 expression. The recessive mutation, adr6-1, leads to an inability to fully derepress ADH2 expression and to an inability to sporulate. The ADR6 gene product appears to act directly or indirectly on ADH2 sequences 3' to or including the presumptive TATAA box. The upstream activating sequence (UAS) located 5' to the TATAA box is not required for the Adr6- phenotype. Here, we describe the isolation of a recombinant plasmid containing the wild-type ADR6 gene. ADR6 codes for a 4.4-kb RNA which is present during growth both on glucose and on nonfermentable carbon sources. Disruption of the ADR6 transcription unit led to viable cells with decreased ADHII activity and an inability to sporulate. This indicates that both phenotypes result from mutations within a single gene and that the adr6-1 allele was representative of mutations at this locus. The ADR6 gene mapped to the left arm of chromosome XVI at a site 18 centimorgans from the centromere.


Sign in / Sign up

Export Citation Format

Share Document