scholarly journals The correlation analysis of WWOX expression and cancer related genes in neuroblastoma- a real time RT-PCR study.

2014 ◽  
Vol 61 (1) ◽  
Author(s):  
Magdalena Nowakowska ◽  
Elżbieta Płuciennik ◽  
Wioletta I Wujcicka ◽  
Anna Sitkiewicz ◽  
Bernarda Kazanowska ◽  
...  

Neuroblastoma is one of the most common paediatric cancers, described as unpredictable due to diverse patterns of behaviour. WWOX is a tumour suppressor gene whose expression is reduced in many tumour types. Loss of its expression was shown to correlate with more aggressive disease stage and mortality rate. The aim of this study was to investigate the role of the WWOX tumour suppressor gene in neuroblastoma formation. We performed real-time RT-PCR to analyse levels of WWOX expression in 22 neuroblastic tumour samples in correlation with genes involved in cell cycle regulation (CCNE1, CCND1), proliferation (MKI67), apoptosis (BCL2, BIRC5, BAX) and signal transduction (EGFR, ERBB4). We also evaluated two potential mechanisms - promoter methylation (MethylScreen method) and loss of heterozygosity (LOH) status, which could be connected with regulation of WWOX gene expression. We found a positive correlation between WWOX gene and BCL2 and HER4 JM-a and negative with cyclin D1 and E1. Our observations are consistent with previous findings and emphasise the role of WWOX in cell cycle and apoptosis regulation. Moreover, strong positive association with HER4 JM-a in this tumour type may indicate a role for WWOX in neuroblastoma cell differentiation. The presented results indicate that LOH in locus D16S3096 (located in intron 8) may be involved in the regulation of WWOX mRNAexpression. However, no association between methylation status of WWOX promoter and its expression was observed.

2017 ◽  
Vol 5 (4.2) ◽  
pp. 4585-4589
Author(s):  
Priya S Patil ◽  
◽  
Jaydeep N Pol ◽  
Ashalata D Patil ◽  
◽  
...  

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
C Balbi ◽  
S Bolis ◽  
L Barile ◽  
G Vassalli

Abstract Introduction Nanovesicles known as exosomes (Exo) from cardiac-derived progenitor cells (CPCs) are cardioprotective and improve cardiac function after myocardial infarction; however the mechanisms of benefit are incompletely understood, especially with respect to endogenous cardiomyocytes (CM) renewal. Periostin (POSTN), a secreted extracellular matrix protein, is emerging as a matricellular factor that can trigger CM proliferation. We have identified POSTN as a protein secreted by CPC and enriched in their exosomal fraction. Purpose We sought to determine whether Exo-CPC can induce proliferation of CM and to explore the role of exosomal POSTN in inducing reentry of CM into the cell cycle. Methods Exo were isolated from CPC condioned medium by density gradient ultracentrifugation. Fractions were analyzed by Western blotting for the presence of POSTN as well as specific Exo markers (TSG101, CD9). POSTN-depleted Exo (ExoCPC_SiPOSTN) were obtained by transfecting CPC with specific siRNA. Active DNA synthesis was assessed on primary cell culture of rat neonatal CM by EdU incorporation. H9C2 cardiomyocytic cells were used to assess by real-time RT-PCR the expression of downstream genes Hippo/Yes-associated protein (YAP) signaling pathway. Results Western blotting analysis allowed to specifically determining the presence of Exo markers and POSTN in the different fractions of secreted vesicles. Smaller fractions (f1-f3) have the highest amount of TSG101 and CD9 as well as POSTN, thus suggesting that CPC secrete POSTN associated with Exo. The silencing of POSTN in cells resulted in a 60% reduction of Exo-associated POSTN compared to naïve ExoCPC. ExoCPC but not ExoCPC_SiPOSTN, were able to increase phosporylation of AKT and ERK in H9C2 cells. YAP phosporylation and its degradation was decreased resulting in the activation of the downstream gene AurBKinase. By real-time PCR, AurBKinase expression was increased by 2.6 folds with ExoCPC and 1.5 folds with ExoCPC_SiPOSTN compared to cells not exposed to Exo. ExoCPC were able to increase 1.5 fold EdU incorporation in cardiac troponin-positive primary rat CM. ExoCPC_SiPSTN did not affect proliferation. Schematic figure Conclusion These results suggest that POSTN may promote cardiomyocyte proliferation through the direct activation of the AKT/ERK/Hippo-Yap pathway. Exosomes released by CPC are an important source of POSTN and may have a potential for promoting cardiac regeneration. Acknowledgement/Funding This work has been supported by The Swiss National Science Foundation under grant n° 310030_169194


2008 ◽  
Vol 36 (4) ◽  
pp. 629-631 ◽  
Author(s):  
Jörg Hartkamp ◽  
Stefan G.E. Roberts

The Wilms' tumour-suppressor gene (WT1), encodes a zinc-finger transcription factor that is critical for the development of several organs, including the kidneys, gonads and spleen. Despite its identification as a tumour suppressor that plays a crucial role in the formation of a paediatric malignancy of the kidneys (Wilms' tumour), it has also emerged as an oncogenic factor influencing proliferation and apoptosis in a large variety of adult cancers. This review focuses on new insights into WT1's role in early development and its potential oncogenic role in adult cancer.


1995 ◽  
Vol 14 (22) ◽  
pp. 5618-5625 ◽  
Author(s):  
G. H. Baeg ◽  
A. Matsumine ◽  
T. Kuroda ◽  
R. N. Bhattacharjee ◽  
I. Miyashiro ◽  
...  

1994 ◽  
Vol 69 (3) ◽  
pp. 409-416 ◽  
Author(s):  
AJ Levine ◽  
ME Perry ◽  
A Chang ◽  
A Silver ◽  
D Dittmer ◽  
...  

2010 ◽  
Vol 8 (5) ◽  
pp. 173
Author(s):  
K. Seta ◽  
M. Nowakowska ◽  
U. Lewandowska ◽  
E. Pluciennik ◽  
M. Zelazowski ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3932-3932 ◽  
Author(s):  
Stephanie Poulain ◽  
Christophe Roumier ◽  
Meyling Cheok ◽  
Sylvie Zoutina ◽  
Agnes Daudignon ◽  
...  

Abstract Abstract 3932 Poster Board III-868 Background Waldenstrom's macroglobulinemia (WM) is a rare lymphoproliferative disorder characterized by bone marrow (BM) infiltration of lymphoplasmacytic cells that secrete monoclonal IgM antibody. Approximately 50% of patients (pts) with WM exhibit a normal karyotype using either conventional chromosome banding analysis (CBA) or FISH approach. However, CBA is a low resolution method and FISH only target previously described abnormalities. Comparative genomic hybridization (CGH) array delineated the minimal deleted region on 6q deletion, the most frequent aberration in WM, and pointed out the role of NFKB pathway key regulators genes. However, tumour suppressor gene or oncogene involved in WM physiopathology is not known, to date. Partial uniparental disomy (UPD) induced by copy neutral loss of heterozygosity (LOH) are important mechanisms for tumour suppressor gene inactivation or oncogene activation in cancer. Recently, Single Nucleotide Polymorphism (SNP) based arrays had been described as a powerful high resolution method allowing both the detection of LOH and copy number alteration (CNA) analysis in the same experiment, a major advantage over CGH array. Our aim was to identify new CNA and LOH involved in WM pathogenesis using SNP arrays analysis. Material and Methods. BM samples of 12 pts with WM (7 males, mean age: 67 years, 7 symptomatic pts) were analysed. DNA was extracted following CD19 B cells selection. Genome-Wide Human SNP Array 6.0 (Affymetrix chips) was used to detect both LOH and CNA. In 6 pts, paired samples (tumor / normal T lymphocytes) were used as an intra-individual reference to identify germline polymorphisms. In the 6 left pts, CN polymorphisms were excluded using copy-number variants database (http://projects.tcag.ca/variation) and the reference genotyping data from the HapMap project. Size, position and location of genes were identified with UCSC Genome Browser HG18 assembly, LOH and CNA using genotyping console 3.02 software (Affymetrix) and Partek genomic suite. FISH analysis was performed to detect deletion 6q; 13q14, 11q22, TP53, trisomy 4 and 12 chromosomal aberrations using Vysis probes. Results SNP array detected 35 CNA (23 gains, 12 losses) in 9/12 pts, with a mean of 2.9 abnormalities per patient (range 0 to 10). 91% of CNA were observed in symptomatic pts. 50% of CNA were < 5 mb in size, the lower limit of detection by CBA. 15 cryptic aberrations were identified among the somatic CNA spread over 7 pts. These 11 gains and 4 losses are identified by *. Deletions were observed on chromosomal segments 1p36*, 3p21.*, 6q16-q27 (2pts), 8p21*, 8p23-q24, 9p21*, 11q22 (2pts), 16p13*, 19p13*. One cryptic homozygous deletion in 13q14 was identified. Gains were observed on chromosomal segments 3p26, 4p16-q35 (3pts), 4q24*, 5p15 (2pts)*, 5p14, 7p22, 12p13-q24, 16p13*, 17q11*, 18p11-q23, 19p13-q13, Xq21* (5pts), Xq22*, Xq25*, Xp22-q28, Xq27-q28*(2pts). We also identified 42 LOH in 9/12 pts (mean of 3.5 per genome, range 0 to 7) dispersed on 17/23 chromosomes. The LOH observed in the absence of CNA loss are consistent with UPD in 35 cases (83%). 59% of LOH were observed in symptomatic pts. The interstitial or telomeric UPD regions varied in size, from 0.4 to 154mb. Two recurrent regions were identified on chromosome 4 (1.2mb involving genes DCLK2 and LRBA) and 13 (0.8mb involving genes KPNA3, ARL11 and SETDB2), probably subsequent to mitotic recombination. No UPD was observed on chromosome 6q. SNP arrays detected all FISH and CBA findings, except in one pt with subclonal deletion of TP53. Of the 5 pts with normal CBA or FISH, SNP array detected a CNA and 4 UPD in one patient and 7 UPD in an other patient. The remaining 3 cases (25%) had no detected CNA or LOH. Overall, SNP array detected a total of 77 genetic aberrations (CNA + LOH) (6.4 per genome, range 0 -16) in this cohort allowing the selection of 976 relevant genes (159 implicated in cellular growth and proliferation, 165 in cancer, 69 in cell cycle). Conclusion New cryptic clonal chromosomal lesions were detected using high resolution SNP array in this study. Several abnormalities were recurrent. We described a high frequency of UPD in WM, that might contribute to the inactivation of tumour suppressor genes by mutations or epigenetic alterations and subsequently to the regulation of tumor progression in WM. Further confirmation of the role of these candidate genes is underway. Disclosures: Leleu: Celgene: Research Funding; Janssen Cilag: Research Funding; Chugai: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document